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PREFACE

TRris report represenis the nsies of an advanced course which the writer has offered
at the Massachusetts Institute of Technology during the first semester of the academic year
1952-53. A continuation of this course during the second semester will deai wita the elec-
tronic structure of solids, treated from the same general poinrt of view, and it i< hoped that
a companion report will be issued latcr, repiesenting the notes of the second term!'s work.
The course was intended for students whn had already taken a first course 1n the quantum
theory of atoms, molecules, and solids, ano has carried many aspects of the field up to the
limits of what we now know. It was designed very much with the needs of those going into the
Solid-State and Molecular Theory Group at M.1. T. in mind, and the notes which form the
present report are intended for guidance of those starting research along the lines now being
pursued by that Group. It was felt that the readers of the Quarterly Progress Reports of the
Group might well be interested in this material, which presents in a more connected fashion
many of the ideas which have been mentioned in & cursory way in the Progress Reports, and
for that reason these notes have been collected into a Technical Report, which is being sent
to the same distribution list as the Quarterly Progress Reports.

It should be emphasized that this does not in any way represent a finished book on the
subject. The typing and planographing have gone ahead in parallel with the writing, so that
there has been no opporturity to revise earlier parts of the nntes to take advantage of ideas
presented in later sections. In many cases the writer's ideas have become changed or clari-
fied as the writing, and the giving of the course, have procecded. In many cases problems
have been talked cver withm * s of the Solid-State and Molecular Theory Group, and a
great deal of thanks is due to many of them for help in clarifying or in originating some of
the ideas. [~ spite of the preliminary nature, nevertheless, the subject is advancing at such
a rate tnat the writer feels tha: a presentation such as this will help speed nr the progress,
both at M. 1. T., and at other places where similar work is under way.

It will be clear to the reader that the material presented here is not in aity sense an
explanation of mclecular structure on the basis of quantum mechanics. It is rathe:r an ex-
ploration of the methods by whi<h quar tum mechanics can hope t¢ soive the problems posed
by molecular structure. Only when these methods are better understaod, by the siuuy of the
sort of simple molecules treated here, can we hope to proceed to more complicated cases.
The writer feels that the uiiderstanding of chemical problems according to the quantum theory
has heen set back, rather than advanced, "y the great desire which many scientists have had
to derive nume: ical results on the basis of ‘nadequate approximations and unjustified use of
simplified theories. It is his hope that. by encouraging 2 more careful study along the lines
of those outlined here, we may eventually find what sort of simplifications really are justi-
fied, and thus be led eventually to a theory of the more complicated molecules which is at

the sa.ne time simple cncugh to use and to understand in a qualitative way, and yet accurate

-fit-
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enough and wzll enough based on the quantum theory tn be reliabrie. He does not feel that the

theory of moiecular structure has yet rcached that fortunate state.

Join C. Stater

Cambridge, Mass.
February, 1953

iy~
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CHAPTER !

THE DETERMINANTAL METHOD FOR ATOMS

In these lectures we shall treat the problein oi ‘ne moution of n electrcnz, under
the zction of their irutual Coulomb repulsions, the attractions of the nuclei of the atoms
of the system, and such mutual magnetic forces, and external electric anud muagnetic
fields, 2s may be pr.-seat. Nuclei will be assumed %o be fixed in position, so that the
energy levels cf the system will be functions of the nuclear positions, regarded as pa-
rameters., According to the fundariental thecrem of Born and Oppenheimer, (1) the se
energies can tken Le used as a potential function for a treatment of the motion of the
nuclei. It is justifiad to separate electronic and nuclear motion in this way, up to a
certain approximation. The approximation breaks dcwn where the nuclei are moving
so fast that their interaction with the electrons is able to cause electronic trensitions
from one clectronic stationary state to another; but we neglect such provlems in these
lectures.

We let the three space coordinates of the ith electron be symbolized by X and its
spin coordinate by s (2) We let ‘ha wave function of the n electrons be U(xlslxzsz oo
xnsn) where we assume that the ‘ime has already been eliminated. Then, if we disre-
gard magnetic terms (as we shall almost always do), and i{ we have no external fields,
the Schrodinger eauation for U is

22
{Z(s) (- Vf) -Ta a)(—rf) + Y (pairs i.j)(riij) + X(pairs a.b)\-—r-— }U = EU. (s 1)

Here we have used atomic units, in which the unit ¢f length is the Bohr radius of hydrogen,
and the unit of cnergy is the Rydberg. () The L.aplacian operator -V , operating on the
coordinates X, is the kinetic energy of the l i electron. The terrm Zza/ria' where Za

is the charge on the ath nucleus, in electronic units, r._is the distance from { W electron
to ath nucleus, is the Coulomb attraction between ith electron and ath nucieus. The fac-
tor 2 arises from the atomic units. The sumrmaticn is over all n electrons, and over all
nuclei. The next term. the summation of Z/r 5 represents the Coulomb repulsions be-
tween all pairs of electrons. The final term, tha- summation of 2Z Zb/r ab’ represents
the Coulomb repulsions between nuclei. Since tle nuclear positions are regarded as fixed,
it is a constant as far as Schrodinger's cquation is corcerned, but we shall need it when
we consider the total energy of the systemm. We shall call the complete Hamiltonian oper-

IM. Born and J. R. Oppenheir:er, Ann. Physik 84, 457 {19.7); for a simplified treat-
ment of this result, see J. C. Slater, Quantum Theory of Matter (McGraw-Hill, New
York) 1951, pp. 500-501. Future references to this work will be merely indicated as
RTM.

2For the meaning of this spin cooirdinate, see QTM, pp. 187-192.

3Fnr these units, see QTM p. 110. Note tha’ they are dil’ferp;n ‘rom the atomic units
Jused by hiartree and his school, in which the unit of energy .s two Rydbergs. l!lartree's
choice of units removes l1e factor 2 in the potential energy terms n Eq.(1.1), but in-
troduces a facior !,/2 in the kinctic exergy term.

. ——————— = ——




THE DETERMINANTAL METHOD FOR ATOMS

ator on the left side of Eq. (1. i) H.
Our whole problem in these Jectures is the solutior. of Ec. (1. 1),
simplest cases, it is hopeless to consider an e«act solution, and we are forced to approxi-

Except in the

The determinantal method, th~ subject of our lectures, represents the most
Before we introduce 11, let us thoroughly con-
Surely we cannot hope for an analytic

mations.
generally uscful of such approximations.
vince ourselves that an 2xact solution is impossible.
sclution, so that we are at once forced to consider numericzl solutions.
But no one of the high speed com-

Our wave func-

tion, disregarding spin, is a function of 3n variables.
puting machines now available or contemplated can solve partial differeuniial equations

with more than two variables. Thus no such machine could compute our function. The

limiting factor in these raachines is storage of information, and this same factor would
limit our numerical calculation of the wave function U, no matter what method of com-
putation were used. We can hardly make a usable table of values of a function of one
variable with less than 100 entries. For a function of 3n variables, then, we should need
a table with (100)3n = 106n entries. That 's. for one particle we should need a million
entries, for two particles 1012. and so on. All the books in the world would not be enough
to write down the wave function for a single heavy atom, and all the magnetic tape we can
conceive of would not record the information. The direct approach to a numerical calcula-
tion of a Schrodinger equation for an atomic or molecular system is, then. completely
imupossible. We must look for other methods of handling it.

Qur hest hope is to express the wave )»unction approximeately, in terms of a number
of functions of o smaller rumber of variables, which we can either tabulate or express
analytically. The determinancal method expresses the function U in terms of a number
of functions ug of the coordinates of a single particle, a=d of spin. These functions u; are
called one-electron functions, or orbitals. We have seen that a minimum of a million
entries ir a table would be required to express a function of three variables, and while
thiz {s an appalling thing tu contemplate, it is not compiectely out of the question, and may-
be someday su.:h functicas will be handled numerically. For the present, however, we
cannot handle them numerically, and musi use partly analytical methods. The thing that
is 2lmost always done in practice is to assume that the ui's are linear combinations of
solutions of a one-electron Schridinger equation for a central field problem, which we
know by ele.nentary methods are products of a spherical harmonic of angle, and a func-

tion of the radius vector. This function of the ralius vector must be determined numer:-

cally, if we are dealing ‘with an arbitrary central field problem, but we are left with a
function of only one variable to work out and write down nuvmerically, and this can be done
with 100 entries in a (able, or actually very satistactorily with some 300 entries. l:is
then no pr«blem at all to deal with a number of such functions of radius. Quite a number
of st<h funviions are needed, but “ne number is comparable with the nu-m:bir of electrons
in ih: problemn, or in thz case of a large sample nf matter, comparable with the number




1. HISTORY OF THE DETERMINANTAL METHOD

of electrons in an atom rather than in the wicle sample. The necessary numerical in-
formation to express an approximate solution of a problem by thic method is no more
than can go into a journal article of ruoderate size. We shall now z0 on to si-‘e the de-
ternnnantal metiod, which leads to this great simplification, but at the expense of giving
only an approximate sclution.

l. History of the Determinantal Method

Belore staiing the details of the determinantal method, it is worthwhile giving a
littie of its history, and of the history of the whole effort to solve the many-body problem
in quantum mechanics. This history beyins in the time of the older quantum mecheanics,
before 1926 when the wave mechanics was developed. After Bohr's success in 1913 with
the theory of the hydrogen atorn, it was only naturul that the thoughis of many physicists
turned to the problem of heavier atoms. An inherent difficulty arose at once. The ocider
quantum theory was based entirely on classical mechanics: it postulated that particles
obeyed classical mechanics, but with quantum conditions supergzosec on it. These quan-
tum conditions were stated in a form applicable anly to motions of a multiply periudic
character. (4) And yet enough was known about classical mechanics to realize that the
many -body probiem did not huve multiply periodic solutions, aside from very exceptional
cases. Fruitless attempts were madc to set up models of light atoms, particularly helium,
which would have multiply periodic miction; for instance, a model of helium consisting of
two electrons rotating at cpposite ends of a diameter in the sume circular orbit. A num-
ber of such models were tried, none leading io anything like agreement with experiment.
It was clear that something radically diffe:ent was needed.

The radicaliy new idea came from Bohr. It had already become clear, by much
study of optical and x-ray spectra on the part of a great many workers, (5) that many of
the facte of spectroscopy could be interpreted ii we identiiied the energy levels with those
of a single electron moving in a central fieid, such as would be set up by the nucleus and

(6)

a collection of eiectrons surrounding it. Bohr' ’ took the radical step of assuming that

an electron in a penetrating orbit moved all the wav “'om the outer to the inner part of
the atom, ploughing its way through inner electron.c orbits, and that stili tiic other elec-

- . e - e m e e e e = - ee=e=

4These quantum conditions, and the older quantum mechanics, are developed in the papers
of Bohr and Sommerfeld in the 1920's. A very good and complete account of the theory,
published just before the wave mechanics was developed, is given in M. Born, Vorlesungen
uber Atommechanik, Vol. 1 (Springer, Berlin) 1925,

5This davelopment is well described by A. Sommerfeld, Atombau und Spektrallinien,
Fourth Edition (Vieweg, Braunschweig) 1924. The Thi-d £dition, 1922, was translated
inte English and published by Dutton under the title Atomic swructure and Spectral Lines.

6N. Bokr, Z. Physik 9, 1 (1922); Ann. Pnysik 71, 228 (1923): The Theory of Spectra
and Atomic Constitution (Cambridge Univercity Press) 1922 (Secand ECiiton, !;ZU:
N2 Tana D Ccster, Z. Phys. 12, 342 (19¢3).




THE DETZRMINANTAL METHOD FOR ATOMS

traons exerted a field on it qualitatively as if they were arranged statically around the nu-
cleus. This was clearly entirely outside the framework of the simple multipiy pcriodic
orbits that had been cortemplated by the quantum theory up to then, and from the time of
these sugzgestions it was clear to physicists that the older quantum theory could not be
correct for svch problems. But the picture qualitatively led to many valuable results:

the structure o: il periodic table. the nature of the x-ray levels, and the generai under-
starding of noptical specira.

Bohr did not try to set up a self-consistent fieid, though the general idea was plainly
in his mind. Several other wcrkers made efforts in this direction, however, during the
period of the older quantum theory. Thus calculations were made by Schrodinger, (7)
Fues, (8) van Urk, (9) Hartree, (10) Sugiuru and Urey, ity and Lindsay, (12) all trying to
set up potentials for central fields in which a moving electron would have term values
agreeing with observed values. They succeeded very well {or several simple spectra,
and the resulting fields are close to those which we now know as self-consistent fields for
the same atoms. They fully realized the desirability of self-consistency; that is, of de-
riving the potential from the charge distrieution of the eiectrons. Fues and Lindsay made
some cfforts to carry out the requirement of celf-consistency. However, with the older
quantum mechanics, in which the electrons moved in discrete orbits, it was obviously a
very artificial matier to average out to get a central field, and this made all efforts at
self-consistency very unsatisfactory.

This situation was entirely changed, however, as soon as Schrbdinger(”) introduced
the wave mechanics. Then it became clear that the inner electrons really hud a continu-
ous charge distribution, and it was a very obvious step to determine the potential of this
charge discribution, and to assume that the outer electron moved in this potential field.
Hartree(“) returned to the problem immeriateiy, and started his long series of self-
consistent field calculations, assuming that each electron moved in the field of all other
eiectrons of ‘ae atom, averaged over directions to gei spherical symmetry. He found,
as is well known, .one-eleclron energy levels in very good agreement with observed term

"E. Schrddinger, Z. Physix 4, 247 (1921).

2. Fues, Z. Physik 11, 304 {1922); 12, 1 (1922); 13, 211 (1523).

9T. van Urk, Z. Physik 13, 268 (1923}.

10p. R. Hartree, Proc. Cambridge Phi.. Soc. 21, 625 (1923).

*1y, sugiura and H. C. Urey, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 7,
No. 13 (1926). =

12R. B. Lindsay, J. Math. Phys., M.LT., 3, 191 (1924).

131, Schrodinger, Ann. Physik 79, 361, 48< (1926); 80, 437 (1926); 81, 109 (192¢);
Phys. Rev. 28, 1049 (1926). — - "'

14p. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89, J11 (1928). and many further
papers which wili e referred to later. -




‘ 1. HISTORY Or THE DETERMINARTAL METHOD

’ ) vaices, both optical and x-ray, and wave finctions whose correciaess could be checked
by computit.g x-ray form factors and in various otiiler ways. Hartree's procedure was
set up intuitiveiy, not as a result of any straightforward efior: to soive thc inany-body
Schrodinger equation, but it was clexi that it gave one-electron wave functions for the

‘ various electrons which had some very close connection with the real suvlution of the prob-

‘ lem.

The present writer(ls) tried to investigate this connection in the following way.
Hartree had found one-electron functions uy for the variou< electrons. The present writer

‘ set up a product of such functions, each referring to a different eleciron, as ul(xl)uz(xz)

‘I 3 un(xn). to represent a many-dimensionzal wave function. If the electrons were really
statistically independent of each otlier, acting on each other only on the cverage, this

‘ would be a correct wave function. He then allowed the Hamiltonian operator H for the

atomn, as given in Eq. (1. 1), to operate on this wave function, and found the diagonai

energy, the integral U*HUdx, . . dxn. which should represent the energy of the sys-
tem. Triis energy cannot be checked experimentaily, in most cases, but the {onization
potentials can. Thus we must calculate also the energy of the ion with one electron re-
moved. The writer used the same orbitals for the ions as for the atom, simply omitting
the function uk(xk) referring to the electron removed, and calculated the energy of ‘he ion,
making an estimate of the error involved in using the same functions uy for thz ion as for
the atom, in spite of the fact that there should really be some rearrangement cf _narge

in going from the atom to the ion, and hence some modification of the wave functions.

This change, being a first-order change in the wave functions, makes Giiy a second-order

change in the energy, by elementary principies of perturbation theory, and these second-

‘ order corrections were estiruuted, The final resuit was that the ionization potential, as
calculated by this correct method involving the wave function and energy operator of the

whole atom, should agree closely with the one-electron encrgy parameter, as Hartree

‘ hed found that it 4fd. This was an anticipation of the result of Koopmans, (16) derived
from the Hartree-Fock method, which we shall discuss later. It might be nienticued that

’ in the paper by the writer just referred to, corrections for exchange were ccnsidered,
as derived ol the basis of the group theory, though they dc =oi follnw directly from the

| product form of wave function “l(xl) .. un(xn). and though the determinantal form of

| function was not yei :n use for this purpose.

‘ To follow our history of the determinanial method, we must now go back and cun-

| sider another development which sta-ted out quite sep.rately from the szlf-consistent
field method, namely the theory of complex spectra, and the electron spin and exclusion
principle which were closely entwined with it. During the time up to 1925, the thecry of

- - e e e e e e e e e o= ® = -

*5J. C. Siater, Phys. Rev. 32, 339 (1928).
lét, Koopmans, Prysica 1, 104 (1933).

PP




THE DETERMINANTAL METHCIL: FOR ATOMS

complex spectra. as described for instance in the work of Sommerteld referred to earlier,
made very great progress. Regularities were discovered, particularly by use of the Zec-
man effect, quantum numbers were inuwoduced, the Landé inte.val rule and various other
rartial formulations of the problem were introduced, on the basis of simple ideas of space
quantization. But! up until 1925, great puzzles and complications were present in the
theory, on account of the fact that the elcctron spin had not been dizcoverzd, and the ex-
clusiun principle had not been formulated. Thus Bohr, in his theory of the periodic sy <-
tem given in the papers to whicn e have referred, did not have the exclusion principle

to work with, and in fact he gave an incorrect value for the nuinber of electrons in a
closed shell of any particular azimuthal quaatum anuniber, and did aot have any convincing
explanation as to why we should have closed shells at all. The incorrect assignment of
electrons to shells was soon removed by Stoacr, (17 who arrived from x-ray evidence

at the assignment of two electrons to a shell of s electrons, six toa p shel:. leritoa

d shell, and so on, which we now know to be correct. He still did not have a convincing
(18) {n 1925, to make his
famous postulate of the exclusion principle. He still was no® working with the theory of

reason for these numbers, however, and it remained for Pauli,

«ne soinning electron, however; his statement of the exclusion principle is in terms of a
fourih quantum numker, in addition to the ordinary three quantum numbers of orbital mo-
tion, whosc significance was not clear at the time, though it had been found necessary to
intrcduce it tc describe the specira. Almost simultangously, Uhlenbeck and Goudsmit“g)
introduced the postulate of tlie electron spin, and the basis for the clementary theory of
complex spectra was laid.

It is very interesting to see how rap dly and completely spectrum theory developed,
once it had these foundations, on the basis of th: vector model, but without wave mechanics.
Thus Hund's(zo)
makes alnlost no use of it; but it contains a description of the theory of conplex spectra

book, though it was published just after wave mechanics was introduced,

which (s subsiontially like that 1n use at present, including complete discussion of the
multiplets forbidden by the :xclusion principle, and such matters, but not including the
caiculation of energy levels. [( was a much slower process, however to make a synthesis
of this theory and of ‘vave mechanics. The first very important step in this direction was

(21)

taken by Heisenberg. He considered the behavior of a system consisting cf two like

particles. 1f tnesc are first concidered independent of each other, one will be described
17g. C. Stoner, Phil. Mag. 48, 719 (1924).

18w. Pault, Jr., Z. Physik 31, 6% {1925).

19G. E. Uhlenteck and S. Goudsmit, Naturwiss. 13, 953 (1925)

20F. Hund, Linienspekiren und periodiscnes System der Elemente (Springer, Berlin)
1927 B ==k - -

2lw. Heisenberg, Z. Physik 38, 411 (192¢); 39, 499 (1°°a), 41, 239 (1927).




1. HISTORY OF THE DETERMINANTAL METHQOD

by & wave function u:(xl). a functivn of the coordinate x. of this particle, and the other
will be described by uz(zz). The nroduct of these two will represent a wave function for
the system. Heisenberg thei. considered the effect of an inceraction between the two par-
ticles, treated as a perturbation. He noted that there are two unpcrturbed funciions,
“l(xl) uz(xz) and u:(xl) ul(xz). which on account of the identity of the pariicles are de-
generate with each other, and be chawed by the theory of perturtstions of degenerate
systems that {n the perturbed problem the correct wave functions were the <vmiaetric and
antisymmetric combinations ul(xl) uz(xz) b4 "Z(xl) ul(xz). and that the euergies of the
two resulting functions differed by an amount depending on the exchange integral

fut(xl) uz(xz) H uzlxl) ul(xz) dxldxz g

where H was the Hamiltonian operator of the problem. He also showed, but by o rather
complicated way, that the symmetric function was to be associated with a single! term
in the spectrum of an atom containing two electrons, and the antisymmetric function with
a triplet.

In this important work, Hcoisenberg laid ihe fourrdations for three later developments:
th= theory of complex spectra, which we shall take up at once; the theory of covalent bind-
ing. which Heitler and London(zz)
mental work; and the theory of ferromagaetism, (23) which Heisenberg himsel{ set up.

were soon to set up on the basis of Heisenberg's funda-

The theory of complex spectra, on the basis of wave mechanics, however, did not develop
as fast as one might have hoped. In onc of Heisenberg's paners, quoted above, he staried
the generalizaticn of the problem of two ¢lectrons to the problem of many electrons. He
had realized in his first paper the relation between an antisymmetric function and the ex-
clusion principle, and he generzlizcd this in the later paper by setting up an antisym-
metric combination of the orbitals up e g of an n-electron problem, forciing a deter-
minant (though he did not write it in determinantal form). At the same tim-, Dtrac(z‘)
had independentiy arrivec at the same results as Heisenberg regarding the symmetric
and antisymmetric solutions in a problem of two particles, the use cf a determinantal
function tc express the antisymmetric combinai‘on in a problem of n electrons, and its
relation to the exclusion principle. But the reascn why these gencralizations did not
proceed faster was the complication introduced by the electror spin.

The wave functions which Heisenherg and Dirac were using were functions of co-
ordinates alone, not of spin; Pauli(zs) had not yet intrcduced his spin matrices, which
gave a practical method of setting np wave functions including spin. Heisenberg realized

2Zw. Heitler and F. Londou, Z. Physik 44, 455 (1927).

23w. Heisenberg, Z. Physik 49, 619 (1928).

24p. A. M. Dirac, Proc. Roy. Soc. (Londer) 112, 661 (1926).
2%W. Pauli, Jr., Z. Physik 43, 60 (1927).
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THE DETERMINANTAL METHOD FOR ATOMS

that in o case where all spins were parallei, : single determinant of orbitals formed the
courrect antisymmetric wave function; but the idea of antisymmetry in cases where some
spins were pointing one way, some the other, cculd rot be 22sily introduced. Lacking
thet, Heisenberg was forced to consider the guneral behavior ¢’ a combination of products
of orbitals under a permutation operation; tne antisymmetric combination changes sign,
the symmetric combination is unchanged, but other combinations can be transformed into
each cther. This led ruturally to a discussion by means of the group theory, as applied
*o the permutation group. This resulted in 2 great development of the group theory, in
vhich Wigner, (26) Hund, @7) Heitler, (28) and others icok part, as well as Heisenberg.
The develonment was complicated, but not fruitful. Those engaged in it became immersed
in their matnematics. and faii:d to make connections with the theory of crmplex spectra
already so well developed from the vector model point of view. The step which tney were
missing was the combination of Pauli's treatment of the spin, and the determinantal meth-
od of setting up antisymmetric wave functions.

This missing step was supplied by the present writer in 1929. (29) In this paper,
one-eieciron wave fuiuctions were set up which involved spin, vsing the general ideas of
Pauli, as well as coordinates. Every wave function aliowed by the Pauli ez iusion prin-
ciple then had to be an antiaymmetric combination of one-electron funciions, so that every
such function could te written as a determinent,

'ul(xlsl) ul(xzsz) o ul(xnsn)

uz(xlsl) uz(xzsz) R uz(xnsn)
(1. 2)

e » e o e 4 ¢ e 2 e e e o o e s s .

Iun(xlsl)un(xzsz) e S un(xnsn)

Each such determinantal function could be identified with one of the assignments of quan-
tum numbers to electrons, which was the basis of the metnods already developed for
treaiing complex —spectrum theory, (30) and it was possible to take over the whole f that
theory bodily intn the framework of wave mechanics. It was aiso nossible, in addition,

to go much further, for now the matrix components of energy with respect to a set of de-
terminantal wave functions couid be compute?, and the secular equations soived, yiclding
the correct combinations of determinants to represent the various actual stationary states
cf the problem. In this way the energy sepacations of the various tesis could be computed.

2E. Wigner, Z. Fhysik 4(, 492 (1926); 40, 883 (1927).
Z7F. Hund, 2. Physik 43, 788 (1927).

28w, Heitler, Z. Fhysik <6, 47 (1928).

29J. C. Slater, Phys. Rev. 34, 1293 (1929).

30These methods are desciribed, for instan-.e, i1 Hund's bouok already quoied; they are
taken up tn QTM, p. '58-182,
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2 ThHE DETERMINANTAL METHCD

i The connection with Hartree's self-concistent field was obvious: the cne-clectron func-

! tions 1y were chosen to be 2 pruduct of a Hartree function of coordinates, «nd a Pauli

' function of cpin. With this development, the ceterminantal method was complete, and it
has formed the basis of most subsequent develooment of the theory of atoms, molecules,
and solids, as «w¢ shall later descitve. It should be mentioned, however, that at about
the same time, Dtrac(n) approached similar probiems from a different point of view,
which vielded results which can aiso be used to discuss the same tygpe of problem. We
shall make little use of these metiiods of Dirac in the present lectures, but they have
been taken up to a considerable extent by the workers in the theory of magnetism.

2. The Deierminantal Met@

The determinantal method is very simple in principle. We set up a number of de-

| terminants of the nature of that given in Eq. (l.2), and try to make a linecar comtination
of them which equals the corrent wave function of the problem:, or soluticn of Eq. (1.1),
to an adequate approximation. There are then two major problems connecied with the
method. The first is how to set uo the dcterminants in the first place; that is, what or-
bitals u; to use. The second ic, having set up the determinants, how to find the csrrect
linear combination of them. This second question is straightforward, znd the answer is
ohvious from elementary quantum mechanics. We find the matrix of the energy operator
H, of Eq. (1. 1), between the various determinantal fur.ctions, gnd <hen make linear ~om-
binations of these functions which diagonalize the energy. ‘The problem is only ¢ com-
pute the matrix components of energy: then the rest of the work is stralghtforward, in-
volving the solution of a secular eouation. The first question, the determination of the
proper orbitals u. however, is much more subtle and d!fficult. We shall have a good
deal to say about it in the future. Before passing on to the second guestion, however, it
will be worthwhile to indicate some of the factors undarlying the choice of the u,'s.

in the first place. we must answer the questicn, whether to approximate aur solu-

tion by a single determinant, or tc use many such determinants. For a problem in which
all electrons are in cloced shells, a passably good approximation can be made using only
a single determinant. Foi problems in which there are multiylets arising from electrons
outside closed shells, this cannot be done at all, eid we must use a combination of a

‘ number cf determirents. In any case, a single determinant, or a few determinants, will

| not give 4 good approximation, for the true wave function certainly does not take this
f2>m, on eccount of the large interaction between electrons. If we wish to do our best
with a single determinant, however, then we have a straightforward way to choose the
ut's: we make use of the variation principle, by which it can be shown that the true wave
funciions of the problem are those for which the energy tategral J U* "y dxl e dxn is

3ip, A. M Direc., Proc. Roy. Soc. (London) 123, 714 (1929).
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THE DEVERMINANTAL METHOD FOR AT"OMS

stationary, when we vary U, provided U i3 kept nc:iinalized. We can interpret this 2s
meaning that {f we start with a single determinantal function for U, and vary the ul's. we
shall get the best approximation to the true wave functions {f we make the energy integral
stationary with -espect to variations of the ul's, and in partic:lar, the Lest approximation
to the ground state i1s obtained if the energy integral is minimized. This condition leads
to the Hartrec-rock equetions, which we shall discuss in a later section. Since (hey deal
with only a single determinantuai iunction, containing just n orbitals ug this method de-
termines only those n orbitals, and does not lead to any method of finding additional ones.

Quite a diffcrent problem arises if we are willing to use a combination of many de-
terminants. We can see tlns by considering tane limiting case, where we are willing (5
use an infinite number of determinants. ‘These can be chosen to form a complete orthogo-
nal set of n-electron antisymmetric functions of coordinates and spins. This can be ac-
complished by making the set of ut's a compleizc orthogonal set of one-electron functions.
Then by general principles of quantum mechanics we know that any antisymmetric function
of the coordinates and spins of n electrons can be expressed as a linear combination of
such a complete orthogonal set, so that our prodlem: can be solved exactly, and it makes
no diiference what complete orthogonal set we use. Of course, this lim!'ting case of an
infirite numtcr of determinants does not concern us in practice. What we may well he
interested in, however, is the problem o finding s finite number of determinants, such
that an arnpropriately chosen linear combin=tio:1 of them forms a very good approximation
to the solution of the problem.

The choice of this finite set of determinants {s a matter ui insight, and we shall
have :iiuch to say about it in the future. Briefly, however, {{ we choose the ut's to repre-
sent ccolutions for the occupied, and lower unoccupiea, levels of the atoms, then tne linear
combination of determinants will represent a problem of interaction of a few lower con-
figurations of the problem, ano the wave function arising in this way may be expected to
be fairly gcod, at ieast when our major interest is in the energy differences between the
states of these configurations. Let us suppose that, by such arguments, we have set up
a number of determinants. Then our problem is to solve the secular equation arising
from these determinsantal functions. We may reduce the order of this equation a good
zeal by taking full advantage of the symmeiry ard multiplicity properties of the wave func-
tions; we shall find in many cases that there are ng non-diagonal matrix components of
energy between determinantal functions of differcnt symmeiry and multiplicity properties.
But we are still likely to be left with secular equations of rather high ordzr to be solved.

Three methods may be thought of for solving these secular equations. In the first
plcce, in the origin:l paper on complex spectre, by the present writer, much use was
made of the diagonal sun. rule, and similar subter{uges, which made the direct solution
of the secular eg:iation almost urinecessary. Such devires are availsble in simpls cuses,

but we must not count cn them, and shall nct stress thein in these lectures. Secondly,
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2. THE DETERMINANTAL METHGD

there is the well-known method of perturbation theory. This is 2ppropriate if ons of Uhic
decterminantal functions is & very good approximation to the solution we are seeking, aaa
the others appear only with very smali cnefficients in the final combination. This situa-
tion can sometimes be achiecved, but again we cannot count on it. Finally we are left with
the straightforward method of the numericz! solution of the secular equation. 'Intil very
recently, this wes so difficult as to be out of the question. Now, however, with the rapid
development of high-speed digital computers, it becomes possible. Seccular equations
involving up to twelv> deterniinants have recently been solved by this method, (32) and the
computers are improving so rapidly thet it will not be long before consicerably greater
secular equations can be attacked. One gets the feeling, therefore, that the future develop-
ment of the method is likely to use more and more determinants, and to rely completely
on high-speed computers to solve the resulting secular equations.

The final resuit of the solution of such a secular equation is a set of energy values,
and of transformation coefficients fcr finding the correct wave functions as linear com-
binations of the original determinantal functions. This is a ratlier small set of numbers,
and {f the orbitals out of which the determinantal functions are computed cau be described
znalytically, or numerically by simple tables of values, we have reduced the problem of
describing the wave function, {rom the formidable proporticns mentioned earlier, to a
L - -»geable scali:. If we use this method, there is no particular advantage in having one
z{ the «..terminarts of our set represent the wave function to great accuracy. We can
just as well use a linczar cumbination in which many wave functions have coefficients of
large size. The essential feature of the ui's. in this case, is that the whole se! of deter-
minants formed fromn them should be capable of describing tke currect function with good
accuracy. We can state this criterion inore clearly {f we remember thai a wave function
can be reprcsented as a vector in a function space of an infinite number of dimensions.
Suppose we have N determinantal functions. If they are linearly independent, they will
define an N-dimensional sub-space in this function space. We may now supplement our
N vectors with an infinite set of uthers, orthogonal to all the N we started vut with, so
that all taken together will form a complete set. Now our wave tunction, which we are
trying to determine, is also represented by u vector. This can be represcnted exartly
as a linear combination of our original N vectors, provided its scalar product with zny
one of the additional vectors of the complete set, not included in the original N, is zero.
That is, in this case the vector lies in the N-dimensional sub-space defined by our vec-
tors. This is the situation we try to auchieve by our choice of a finite numbcr cf ceter-
ruinanta! functions. If we have almnst achieved it, that is, if tnc scalar products of the

32A. Meckler, Ph.D Thesis, M.l T., Sentember, 1952, Quarterly Progress Report,
Solid-State and Molecular Theory Group, M.[.'T.. July 15, 1952.
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THE DETERMINANTAL METHCD FOR ATOMS

a good approximation. As we have said, it is a meatter of iusight to choose our ¥ Jd:tor-
minants to achieve this situation, and we shall give much discussi::, a5 we gu ui: o MEth-
ods of doing it.

1.2t us suppose such a set of determinants to be set up, huwever, and now let us
address ourselves to the other part of our problem, that of determining the correct linear
ccmbinations of determinants. To do this, as we have mentioned, we must find the non-
diagonal matrix components cf the Hamiltonian with respect to these functions, and set
up the usual determinantaul equation hetwzen them. At the outset, we observe one thing:
our procedure will be very greatly simpliried if the determinantal functions are orthogona.
to each other. This simplification is just like that found in algebra and analvtic geometry,
in which it is very easy to manipulate problems if they are expressed in rectangular co-
ordinates, but very complicated in an oblique coordinate system. The equations car be
set up in non-orthogonal systems, and they have been so set up; 33) but they have almost
never been used, and in actual applications it has almost always been assumed that the
departures from orthogonality are smzll, anrd these departures are then neglected. This
is not justifiable. We shall prefer to use determinantal functions which are really or-
thogonal, and to use these rigorously. We shall set up our equations only for iiiis case,
and shall carefully avoid all use of non-orthogonal determinants, unless we specify other-
wise in special cases.

It is easy to prove that all our determinantal functions will be orthogonal ¢~ 2ach
other, provided every cne-eleciron orbital appearing in any cie of the cterminants is
orthogonal to every other on; and we shall generally make this assumption. There are
a number of consequences from this assumotion, which we might not quite realize at first,
and a number of comments to be made about it. In the first place, it excludes the use of
the ordinary Hartrea functions as orbitais u. Hartree's original method is based on the
assumption that each electron moves in the field of all electrons except itself. This
means tihat each wave function is a solution ~f a different centrai field problem, so iiat
there is no reason wny they snould be orihogonal, and in general they are not. It does
not exclude functions determined by the Hartree-Fock method; we shall show later that,
even thougi these are solutions of cdifferent central field problein:s, stiil they automatically
are orthogonal to each other. But we have roted that since the Hartree-Fock method op-
erates only with a single determinantal func:ion, it détermines only n orbitals u.
want to use a number of determinantal functions, we must have mcre ui’s. If we found

If we

more of these from a second Hartree-Fock problex, reler:ing perhaps to a different
configuration from the first, all the ui': derived from this second problem: would be some-
what different from those of the first set. '1'0 see this fhysically, let us suppose that the

33See. for instarce, J. C. Slatcr, Fhys. i{ev. 3%, 1109 (1931), where they are Jiccussed
for molecular problems. -
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2. TIHE CETERMINANTAL METRQD
first Hartrec-Fock prcblem represented the ground state ol an atom consisting of closea
shells {for instance an inert gas atom), and the seconrd probiem an excited configuration
{for instance the same aton: it which the two s electrons iii one of the shells were excited
into s states in a higher, previously nncccupied shellj. The excitaticn of these electrorns
would affect all the other electrons of the atom. eveun down to the K sheli, so that the
second set of ui's. »s we have said, would all be different from thc first. But then they
would not be orthogonal to the functions of the first set, and the convenience of our method
would be lost.

We wish, then, to construct all our determinantal functions from one single set of
orttagonai orbit.ls u;. choosing n of them for the first determinant, another n for an-
cther, and so on. Thus .f we have N crbitals, we shall be able to choose the n fror
them in N! ,/{n! (N - n)f} ways, and we shall be able to set up this number of determinantal
functions from them. There are really two practical ways of finding the set of N orthogo-
nal orbitals. One is to have them all given as solutions of a single Scarodinger equation
for the motion of a single particle; for we know that all solutions of a single Schrédinger
problem are orthogonal to each other. A practical way to do this, as solutions of a
Schradinger precblem which respresents a self-consistent field in a satisfactory way, has
recently been given by the present writer; 24 we shall discuss this method in detail later.
The second method is to set up functions which we have artificially made orthogonal. If
we have any N non-orthogonal vectors, then we can set up N linear combinations of them,
which will be orthogonal, in an infinite number of wuys. Thus {f /2 have two vectors {n
a plane whick are not at righ* angles, (and also not parallel), we can set up any {wo vec-
tors in the >lane which are crthogonal to each other, and they can be written as linear
combirnations of the first two. Now we can prove a very important general theorem: if
we have two sets cf N linearly independent vectors, of the sort just described, one set
being derived from the other by linear transformations, and if we form all the determi-
nantil functions from each set of N orbitals, choosing n functions for each determinant,
then the determinamtal functinns of one set are linear comuinations of the determinant
functinns of the other set. Thus an approximate soiution of Schrodinger's equeiion which
can L oxpressed as a linear combination of functions of the first set can equally well be
expressed as a linear combination of functions of the second set Tne [inal result of our
calculations will then be the same, in either case. Since it simplifies thc calculation
greatly, it is therefore worthwhile, if we wish to start with N non-orthogonal vectcrs or
orbitals, to meke N orthogonal linear combinations of them at the outcet, arnd then pro-
ceed from there. We shall later discuss certain methods of making these linear combina-
tions which have pasticular value in siinplifying 1he later steps of the calculation. But
once we have done this, we then wish to solve the secular probiem in which all ui's are

34J. C. Slater, Pays. Rev. 81, 385 (1591).
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orthogonal, as we stated sumewhat earlier, so that we are justified in limiting our cal-
culation of the matrix components of energy to tins simple case. We note thal «ne sim-
plest result of the thec.'em mentioned in this paragrarh is that if N = n, or if we have
just as many crbitals as electrons, so that only one dete''minant is formed, *nis deter-
minant wiil be identical whether i: is formed from the original n orbitals, cr from any
n linearly independent linear comrbinatic..s of *them.

We have now discussed the general philosopny of the determinanial method erough
so that we are prepared to proceed with its use. We shall then calculate the matrix com-
ponents of the energy between two such determinantal functions, formed from two differ-
ent selections of n orbitals oui of a set of N orthogonal (and normalized) orbitals. We
shall assume each determinant to be divided by (n! )l 2; then :lLe determinants will be
normalized, as well as orthogcnal, as a consequence of the orthocaormal properties of

the ui's. Then it is a straightforward matter to compute the required matrix couinponents,
and we merely swuie the results. (35)

3. Matrix Components of Energy and Angular Momentum

The energy operator, givea in Eq. (1.1) is a sum of operators, which we may call
fi' each operating on the coordinates of a single electror (that is, -Vzi - Z(a) ZZa/ria};
and a sum over pairs of eiectrons ot quantities gij' each equal to 2/; i each operating on
the coordinates of two electrons; the reamaining terms, the electrostatic interaciicis be-
twee \ nuclei, are a constant, and have a diagonal matrix. We then wish to find how to
get the matrix components of such operators with respect to determinantal wave functions
of the form given in Eq. (l.2), properly ncriualized by dividing by (n! )1/2, in which we
are to assume that ail orbitals uy appearing in all the determinants are orthogonal tv eac::
wther. If one of the determinants is formed from ortitals u, . . Upy the second from or-
bitals ul' . un'. then we can see very easily that the matrix of an operator like H, which
is svmametrical in all the electrons, can be written in the fcrin

gdr(i'?) ul’*(xlsl). un'*(xnsn) Hul(xlsl) G un(xnsn) dx, . . dx_ .

where the sum is over all permutations of the subscripts 1 . . n of the first set of func-
tions, each term is to appear with a + or - sign according as the permutation involves

an even or odd number of interchanges of rows or columns, and the integration over the

x's {s supposed to include also a summation ovcr the spins. If the operator } ~onsists

of summations of quantiticc fi’ each fi v:Aill operate on only one of the u's following it, so
that on account of orthogonality, the integral will be zero unless each u' except uf' is

35T e results for diagunal components were stated by J. C. Slater, Phys. Rev. 34, 1293
(1929) for non-diagonal components, by J. C. Slater, Fhys. Rev. 38, 1109 (1931)
note a typographical error there in the formuia toi* & quantity cailed{U/G/U'). For the
non-diegonal ~omponcnts, sec¢ also . U. Condon, Phys. Rev. 3¢, 1121 (1930). The
results are vlso given in QTM, p. 135. -
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3. MATRIX COMPONENTS OF ENERGY AND ANGULAR MOMENTUM

identical with the correspanding u. if I? cnnsisis of suiniinations of gij's, the integral
will be zero unless each u' except the it“ and jth is identical with the corresponding u
Proceeding in this way, we can easily find the matrix components. These are stated in
QTM, pu. 194, 195, and we iepeat the definition in the same fourin.

To state the values of these components, let us defire .. quaniity
(1//3) = YL(spin l)jui*(xlsl) fluj(xlsl) dx, (1. 3)

We note that if f is an operator depenning on coordinates oniy, as in the operator H from
Eq. {1.1), then the quantity (1. 3) will tc zero if the functions u, and u, correspond to dif-
ferent spins. On the contrary, if f depends on spin nnly, the quantity will be zero if

u and u.j correspond to different functions of coordinates. Similarly let us introduce a

quantity
(ij/g/xe) = Z(Spin 1) Z(spin 2) fjui*(xlsx)uj'(xzsz)glzuk(xlsl)u‘(xzsz)dxldxz (1. 4)

Here again we notice that {if g2 depends on coordinates only, this quantity is zero unless
ug and U correspond to the same spin, and u, and ty correspond to thc same spin.
In terms of these symbols (1. 3) and (1.4), we now find that the diagonal matrix
omnnrant of energy with respect tc a dctcrminantal wave function equals
Swie T [uler - e, (t.2)
i perre L)
where the quantities (ij/g/ji) are called exchange integrals, and where we see that they
are zero unless the orbitals u end uJ. correspon? lo electrons with the same spin. The
non-diagonal matrix component between two determinantal wave functions will be zero if
the two determinants differ in more than two orbitals. If they differ in just two, say by
having orbitals vy and uj replaced by ui' and uj', all others being common to both detern.i-
nai:'s, the non-diagonal matrix component is
(i3/&/i'i') - Gjfe/i'i') . (1.6)
If they differ in one orbital, u, being replaced by ui', all others being common to voth
determinants, the non-diagonal matrix component is
Wiy s 8 [/aiin - (ik/g/xi) (1. 1)
k#i
By usc of these formulas, we can easily find the rnatrix components of the energy
between various determinantal wave functions, provided we can compute the integrals ol
form (1. 3) and (1.4); we shail have sometning to say later about actual methuds of com-
putation. Once we have the matrix of energy, we can set up the secular equation, and if

we can solve i{t, we can set v~ *he wave functions which forin the best possible combina -

tions of the origina! daterininants, in order tc approx!mate the true was2 functions of thie
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rrobiem. We musti remember that our formulas for matrix components have their rather
simple form cnly on accourt of the orithogonality of the orbitals. [f these were not orthogo-
nal, the formulas weuld be exceedingly compiicated, though even in that case they can of
course be set up.

In most atomic prob.ems we raust solve a secular equation between a considerable
number of determinantzi wave functions, aud this equation would be of very high order,
and difficult to handle, if it viere not for simplifying fcatures. Thus if n' out of the n
electrons have unpaired spins, we certainly are interested in all the states formed by
choosing the spins ¢f thiese electrons in either of the pussible ways, so that we surely
must consider ?nl functions. Generally toc there is orbital degeneracy as well as this
snin degeneracy. The simplifying features arise from the corcervation of angular mo-
mentum. If we disregard the magnetic. spin-orbit ~oupling, botk spin and orbital angular
momentum are conserved, in the absence of an external field. We shall describe in the
next section now this conservation can be used to he.p solve the problem. The first thing
which we need to know, for this purpose, is how to fiand the matrix components of the
various angular momentum vectors, between the various determinantal wave functions.
We shall find that we wish the matrix components of the z component (where z is an ar-

bitrary axis of space quantization) of spin angular momentun, and of the square of the

tum. In finding these, we shall remember that the total angular momentum {s the vector
sum of the angular momenta of the various electrons. We ster’, then, by finding 'he
matrix components of the x, y, and z components of angular rnomentum of a sing'e elec-
tron, then by summing over all electrons, and finally, if we are interested in the square
of the tolal angular momentum, in squaring the components and adding.

In finding matrix components of the angular momentum vectoirs, we are dealing
with a problem which held a very important position in the development ¢f quantum me-
chanics. 7The structure of multiplets, and parcicularly the Zeeman effect, (36) were
proolems which contributed very greatly to the vector modi!, and to the whole structure
of quantum theory. ror this reason, the interactior of angular momentum vectors was
one of the first yroblems investigated by quantum mechanics. It was a problem for which
the methods of matrix mechanics, introduced by Heisenberg(37) sligiitly before Schro-

dinger's wnve mechanics, prov:d to be nore convenient than the methods of wave me-

36These pioblems are taken up in Sommerfeld's Atombau und Spektrallinier, previously
mentioned. An excellent treatmecui, by two of The workers who coniributed most to
their understanding, is the book Zeemaneffek: und Multipletis‘ruktur der Spektrallinien,
by E. Back and A. Landé, (Sprirnger, Berlin] {924 Many relercnces to éarlier work
are given there.

37w. Heisenberg, Z. Physik 33, 879 (1925); M. Born, W. Heisenberg and P. Jordan,
Z. Pr; ik 35, 557 (1926); the therrems regarding angular mcmentumn are well tuken
up in Eleinentare Quantenmechaonik, by M. Burn and P. Jordan, (Sp.oinger, Berlinj
1930. " Munv other writer$ during this scme period uvontribuied 4 the tieory.
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proviem. We must remember that our {crinulas for metrix compeneztc have thelir rather

simple form only on account of the orinogonality of the orbitals. If these were not orthcgo-

nal, the farmulas would be exceedingly complicated, though even in tiat ~ase they can of
course be set up.

In most atomic problems we muet 20lve a secular equation between a considerable
number of determinantal wave funciions, and this equaticn would be c? very high order,
and difficult to handle, if it were not for sitmplifying features. Thus {¢ n' out of the n
electrons have unpaired spins, we certainiy are interested in all the states formed by
choosirg the spins ol these electrons in either «f the possible ways, ic that we surely
aust consider Zn' functions. Generally too there is orbital degeneracy as well as this
spin degeneracy. The simplifying features arise from the conaervation of angul>~ mo-
mentum. ii we disregard the magnetic spin-orbit counling, toth spin and crbital angular
momentum are conserved, in the absence of an external field. We shall describe in the
next section how tiis conservation can be used to help solve the problem. The first thing
which we need to know, for this purpose, is how to find the matrix components of the
various angular momentum vectors, bstween the various determinantal wave functions.
We shall {ind that we wish the matrix components of the £ component (where z is an ar-
bitrary axis of space quantization) of spin angular momentum, and of the square of the
magnitude of the spin angular momentum; and similarly for tke orbital angular momen-
tum. In finding these, we shall remembe. that the total angular momentum is the vector
suvm of the anguiar momenta of the various electrons. Wwe siart, then, by finding the
mat:-ix components of the x, y, and £ components of angular momentum of a single elec-
tron, then by summing over all electrons, and finally, if we are interested in the square
of the total angular momentum, in squaring the components and adding.

In finding matrix components of the anzular momentum vectors, we are dealing
with g problem which hsld & very important posiiion in ths 200 lupmeand 0f quastum me-
chanics. The structure of raultiplets, and parilcularly the Zeemaa offect, (36) were
probloms which contributed very greatly ¢o the vector model. and to the whole structure
of quantum theory. For this reason, the inieriction of angular momentum vectors was
one of the first problen:s invastigated by quantum mechanics. It was a problem for which
the methods of matrix mechanics, introduced by Heuenberg(”) s!ightly before Schré-
dinger's wave mechanics, proved to be niore convenient than the methods of wave me-

36’1‘!:0.0 problems are taken up in Sommertfeld's Atombtau und Spekt-«iiinien, previously
mentivned. An excellent treatment, by two of the Werkcrs wid cuinilouted most to
their understanding, is the book Zeemuneffekt und Muitiplettstruktur der Spektrallinien,
vy E. Back and A. Landé, (Springer, Beriia) (923 Many relerences to earlier work
are given there.

37w. Heisenberg, Z. Plletk 33, 879 (1925); M. Born, W. He:senberg ana :>. Jordan,
2. Physik 35, 557 (1926); the theorems regarding angular momentum are well taken
up in Elexcerare Quantenmechanik, by M. Born and P. Jordan. (Springer. Berlin)
1930 “Wany other writers diling this same periud contributed to the theory.
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3. MATRIX COMPONENTS OF ENERGY AND ANGULAR MOMENTUM

chanizs, proved to be more convernient than the methods of wave mechanics, though cf
course the two methods are intimately related. {33} The treetment c! the electron spin,
Ziven in 1927 by;Puuli. (39) was based on the general meihods already worked cut several
yesrs bafara. gs {f the ciocisun were mereiy a spinning vector of angular momentum

1/2 unit. We shall use this point of view, referring the reader to QTM, pp. 479-485,
and shall first set up the matrix ccraponents of the spin angulzr momentum of a single
electron.

The stu’ﬁng point of the usual method of quantizing angular momentum 1is to as-
sume that we have a set of wave finctions differing from each other only in the compo-
nent of angular @omontum along the £ direction, which is assumed to be quantized. If
the quantum number representing the magnitude of the sngular momentum is £, and the
quantum number 'uprcunttn‘ ita comporer.it along the z exis is m, then, as shown in
tae referances tigontloncd (see QTM, p. 482), the matrix components of angular momen-

tum are the foiicwing:
M(mm¢+¢l)r M(m+l,m)s «/(_1 - il ¢+ m+ 1)(h/4w)
M’fm. m+l)s -l(,(m+ 1, m) =i +{i-m)g+m+ 1)(h/4w) (1.8)
M (m, m) = mh/2w.

Tuat {s, Mx and 'H’ have components only between two wave functions whose quantum
numbars m differ by one unit, while M has oniy diagonal components. We now apply
these equations to the =pin of a single electron, whose msgnitude is h/4w, corresponding
to 2 = 1/2, and for which therefore the y:aztum number m can take on only the two
values £ 1/2. We shall write the matrix components, not 2f the 2=gulas momentum {t-
self, but of the angular momentum divided by h/2w, which we shall denote by the com-
ponents s, 3., s,. Then we find, using (1.8), that the oniy componenis diftercat fram
tero are

sx(-l/z. 1/2) = .:(1.-'2. -1j2) = 1/?
.’(;I/z. 13) = - (1/2, -1/2) = 1[2 (1.9)
s (1/2, 1/2) = 1/2, s (-1/2, -1/2) = -1/2.

Thase vector components are half zs large as those used by Pauli, in the reference just
cited; he measured his angular uomentuz: in units of h/4w inctead of /2w a5 wc are
doing.

We may now combine these expressicns with our gereral method of finding matrix
components of an operator, as given in Egs. (1.5), (1.6), and (1. 7),to find matrix com-

38 The matn points of this t-eatment are given in QT, pp. 479-485.
39w. Paull, Jr., Z. Physik 13, 601 (1927).
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THE. DETERMINANTAL METHOD FOR ATOMS3

pvosents of ihe spin angular momentum, and of its square, with respect to tuc delermi-
nantal wave functions. The operators s 8., 8, are funciions of spin cniy, asdcf a
single eleztron only. Thus they sre of the form fi. mentioned earlier, and as pointed

out before, there wil! be r> non-diagenal matrix components between two states in which
the quantum numbers of more than one electron changs. and furthermore there wili be

no components be*wesn “wo states {n which the orbite! parts of the ~ne clectron functions
change. 1f we denote the sum of the sx': of all electrons by Sx. and similar!y for the
othier components, we then find that Sx has nca-vanishing components only between two
states whcse sets of orbitals u; differ only in thet one pasticuler orbital for the initial
state corresponds to the opponrite suin from the same orbital for the final state; then the
non-diagonal compon=nt of 8x equals 1/2. Shuailarly S.'. has components only between
such states, the ncn-diagonal componert being /2 {f the spin  lianges from - 1/2 to + 1/2
going -or the initial to the final state, but - i/2 if it changes froiu + 1/2 to - 1/2. The
componeni :‘. has oniy a diagonal matrix component, and this is composed out of con-
tributions s from each electron. These contributions equal 1/2 for all electrons of +
spin, - 1/2 tor all electrons of - spin. The sum of aii these is the net z component of
spin of all electrons, measured in units of h/2x; this (s what 15 usuuliy called M,. Hence
we see that S:. has a diagonal matrix, its diagonal compouent for any deteminan:ax func-
tion being the Ms of that function. R 2 "

We can now use these rulea to find the matrix of Sx‘ + sy + s'_ 10 av W=
we need merely use the famillar rule Jor multiplicatior of two matrices. Thls ¢w et |
that b~ T=triv of the produst of two matrices F and G, peiween two states. equals the
sum of products cf 'ratrix components of F from the initial state to all possible inter-
mediate states, times the component of G from the intermediate state to the final state.
In our calculation, then, we must Ioc: for all possible intermediate states between the
initial and 1inal state, and set up the appropriate products for each. We see ct once tnat
sz + 8 2 + £ 2 can huve compounents only betweaen two determinantal functions with the
same orbital pm of the one-electron fuuctiuns, and that furthermore only two eiectrons
can change their z component of spin in going from initial to final stali: one in going
from the initia! to the intermediate state, another going from tka intermediate to the
fina) astate. If both these electrons change their spin in the same dtrec‘ton (that s, {f
hoth go from + to -. or boin from - tc +), then the contributions of 8 wm be (1/2)"‘ =
1/4, and of 8_2{t/2)% or (- 1/2)%, or - 1/4, 30 that the seatrfoutions o:s + syz will
cancel. If thcre are any changes of spin, the comr bution of 8 will be zero. Thus we
see at once, by direct calculation. thet sz Sy 2 will haw- non-vanishing matrix
compunants only between two states of the same Ms. smce {f the spin of one electron
changes from + to -, that of the other rom - to +, the MS will be the same in iniiial
and fi-.al state.

Let vs now calcu'ate firut tae diagonal matrix comzcnent of sz + Syz + Szz,
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3. Ma: RIX COMPONENTS OF ENERGY AND ANGULAR MOIENTUM

From the operators sz end sz. we shall have contributions from many intermediate
states. In fact, if an,; ane-electron function of cocrdinates appears in the determinantal
functioh we are considering oniy once, with only one spin, we can heve an intermediate
state in which this eiectron appears with reversed spin. We can call such an electroi an
unp2ired electron. ¥or each such urpaired electron, then, the contribution of S £ from
the original state to this intermediate state with rcverud spin, and then back :\. the initial
state, will be 1/4. Similariy the contribution of Sy will be 1/41 here, in contrast to the
preceding case, the two fectors multiplied together in finding S vtll refer to transfor-
mations with the spin changing in ooposite directions, so that \n shall have (1/2)( -1/2) =
1/4, and the terms from S 2 wm add to those from 8 txutead of subtracting. The net
result, then, is that S + S wm contribute an unoum 1/2 to the diagonal component

ui the matrix, from euh unpdred spin. Nothing will be contributed from paired sgins,
that is from orbital wave functions occupied by electrons of both apins, for then tne inter-
mediate state, in which onc of the electraiis changes the sign of its spin, would be for-
bidden by the exclusion principle. The operator Sz will cont:-ibute simply Ms to the
diagonal component of the matrix. Thuas we conclude that the dissonal romponent of

8 C + Sy',' + szz with respect to a determinantal wave function equals the Msz for that

x
wave function, plus 1/2 times the number of electrons with unpaired spin in the wave

Next let us find the non- dtago:uu matrix components of b, ¢+ syz + szz. There
will be nu contribution from S . We hav: sirapdy seen that thore will be a component
only if the spin of one orbital shl.fts from + to -, and of another orbite! from - to +, in
going from the initial to the final wave function. There will be two possible intermediate
states: in one of them, the spin which was originally + has changed ts -, but that which
was originally - is unchanged, so that this is a state with twc - spins for the orbitals in
qusation; the other intermediate state is one with two + spins. In either case, sz con-
tributes ./4 going from the initial state through the intermediate state to the final one,
and 80 does S_°, so that each intsrmediate state contributes 1/2 to the non-diagonal ma-
trix component, and the two intermediate states together contritbiutc unity. Each'non-
venishing non-diagonal matrix component {s then unity. We observe that any orbital func-
tion appearing twice in the determinant, once with + spin, once with -, will take no part
in the non-diagonal matrix componentis, since the possible intermediate states formed
from this would be forbidden by the exciusicn principle.

We have seen, then, how to find the matrix components of sz + Syz + Szz. w2
have followed in this the methed introduced by Johnsoii, {49) who used these components
in the way to be described in the next scction. Johinson also computed, for reasons which
we shall s¢e shertly, e oaivix comuonents of sz + Lyz + i.zz. where the L operator

M. J. Johnson, Ir., Phys. dev. 39, 197 {1932).
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THE DETERMINANTAL METHOD FOR ATOMS

starda for orbita! angular momentum, divided by h/2w, just 2e the S <tands for spin angular
momentum. The procedure used in iinding this is entirely analogous to what we have just
shown. We sta.t again with Eq. (1. 8), but ncw the square roots do not simplify as they do
with the spin. We find that Lx' Ly' Lz. the vector sum of the criital angular momenta of all
the electrons, havs non-diagonel matrix components only between two states in which the or-
bital quantum number m of a sing!® =lectron nus changed by 1 1 unit, and these non-diagonsi
matrix components follow at once irom Eo. {1 2). The quantity l' has a diagonal matrix, the
disgonal compcnents being just M. L’ the sum of the components of orbttd angular momzatum
along the z axis fcr all electrons We can find the matrix components of L + Ly2 Lz2
just as in the spin case, by mautrix multiplication, though the formulas are not as simple as in
the spin case. We find, as before, that there are no non-diagonal matrix components between
two statse of Aifferant ML value. The only non-diagonal components then come b=tween two
states which differ in that the m1 of one electron has increased by | unit, and that of one other
electron has decreased by 1 unit, between the initial and final functiuns. As for the opin, in
calculating either diagonal or non-diagonal components, we must take account of all pon:‘.!:le
tntermedtnte states, consistent with the exclusion principle, find the components of L nnd
L u-utng from transitions from initiai to final state through thcese intermediate’ ﬂtates. ns-
ing Eq. (1.8), and combine the results. The final resuit is very sijie to work out, though
the formula, as given in the reference cited by Johnson, is a litt'c zomplicated to write down,
simply because it tries to take account of all those cases permitted, or forbidden, by the ex-
clusion principle. We shall not state the formulas, since the reader, if interested, can work
thema out for himsels {scr the directions which we have given, aboui as easiiy as he can learn
to understand the notation necessary 0 =riln them down explicitly.

Johnson also works out the matrix components of the scalar product Lxsx + Lysy v
Lzsz. again for reasons which we shall explain shorily. Here again the method is obvious
from what we have already said. This quantity has ron-diagonal matrix components only be-
tween two siates <uffering frem each other in that the orbital angular momentum has had its
coxmponent along ‘¢ z axis decrease by 1 unil Setween the inltial and finai function while the
z component of spin angular momn:entum has increased by an equal amavnt, or vice versa.
Tne diagonal matrix coniponent ig sumply MLMS'

4. Solutton of the Secular Equation I’'roblem for an Atum

We have already meantioned that in setting up the problem of the structure of an atom,
we must v se » considerable number of determinanta! farictions, te get a proper representation
of the real wave functions describing the muitiplets. It would be a difficult thing to solve ihe
secular equation for the enargy, between these determinantal functions, if we did not have ad-
ditional tnfcrmation. This additions) informatinn is supplied by the behavior of the angular
momentum, whose matrix crmponents we have discussed in the preceding section. lLet us
now sce how they are 1o ne used. We shall first consides tne case whore the energy cperator
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4. SOLUTION OF THE SECULAR EQUATICY PREOBLEM FOR AN ATOM

is just the Hamiltonian of £q. {l.!), including only kinetic energy and electrostatic terms.
Lzater we shall take up the more compiicaiid coee in which we consider aiso the magnetic in-
teractions between spin and orbital motions of the electrons; these magneiic ilnteraciions, as
we know, are responaible for the sucrgy separation between the levels of “he multiplets.

rairst we ramind the reaver ¢f the simplified method 3! liandiing the problem :nt-odnced
by the present writer(“) in nis paper on the subject. We note in the first place that there are
no non-diagonal matrix compnnents of energy between states of different ML or Ms values, so
that we need to coneider secular equations only between the varicus determtinantal functions
having a given ML and Ms This already greatly reduces the or:ler of tiic sccular 2quation.
But further, ve remember, as in the discussion just mentioned, that each energy value ap-
pears as a root of many of these secular equations. Thus when we wish to solve one of the
secular eguations, we may often find that all of its roots but one are already known. Then we
may use the diagonal sum rule, according to which the sum of the diagonal mairix cromponents
of the energy matrix equals the sum of the roats of the secular equation, to find thc one miss-
ing root by subtraction, and without having to srlve the secular equation, or even to compute
its non-diagonal components. By this means, as was shown in the relerence quoted above. we
can find the energy levels of all the muitipleta, as far as they rre determined by the electro-
static Hamiltonian of Eq. (1.1), provided we have cnly one multiplet of each L and 8§ volve,
If we have more than one multiplet cf a given L and S value, then the diagonal sum rule allows
us only to find the sum of the energies of these multinieis. Thus, for instarce, {f we have the
case &f three non-equivalent s electrons, which can éasily b2 shown to'lead to a quartet and
two doublets, the diagonal sum rule only ieads to the sum of the energies of the two doublets.

For thé czses where this method using the diagonal sum rule is applicable, it is the
simplest way to solve the problem. However, there are several drawBacks connected with
this method. In the first place, it is obviously inadequate if we have more than one multiplet
of the same L and 8 valve. In this case, we can still proceed. Suppose, for instance, that
the diagonal sum rule ailows us io find all but two of the roots of a secular equation of N rows
and columnns, giving only the sum of the two remaining roots. We can set up the wwhole seculer
equation, which we can do if we know the non-diagonzl nialiix components of energy. This
will be 2 slgebialc equation of the N:h degree, of which we know N-2 roots. If these roots
are aenoted by E,. .. EN .20 WE know that the seculai =guation, which will be of the form of
eN , AlEN'l + .. 4 1'.“ = 0, must contain factors (E - El)' (E - Ez). .. (E - EN-Z)’
We the: 2ivide the left side of the equation by these factors, ond are automatically left with a
quad.atic, which we can solve by elementary methcda, Extension of this method aliows ns in
any case to take full advantage of the diagonal sum rule, und solve secular equations by nu-
merical or other method only for the final inescapable problem of handling the varicus mul-
tiplets of the same L and S value. However, iiiis procedure may be u little complicated, and

41y ©. sister, Puys. Rev. 34, 1293 (1929); taken np in QUM, pp. 158-)36, 79-489.
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THE DETERMINANTAL METHOD FC: ATCOME

we might »ish a procedure for getting directly to the secular equation for these remaining
multiplet energies. We know that the variouc solutions of the original s=cular equation cor-
resyond to multiplet states of various L and S values, and it wnuld be a help if we could
scparate {t out from the outset into equations each corresponding to only one particular L and
one particular 2 value, This, as we shall sce, crn be done, and each one of these equaticne
will thea be reduced s= far as is possible. from considerations of angular momentum.

The second drawback of the method of diagonal sums is that it dues not yield the wave
functions, but only the energy values, of the final states. These wuve functions are often re-
quired. In particular, iif we wish to {nclude the magnetic interaction, which has been men-
tioned previously, tnc first step is crdinarily 1w soive for the degeneracy problem arising
from the elecirostatic interaction, then use the wave functione resulting from this as the
=taring point of a calculation of the energy leveis and stzationary states of the problem iiclud-
ing magnetic energy. The firat astep is to compute matrix components of the magnetic inter-
ar’'an with respect to these wave functions, and this obviously cannot be done unless we know
the wave functions. Here sgain a method of finding the wave functions associated with a def-
inite value of L. and S, as well as of M, and MS is needed.

Let us now see how a knowledge of the behavior of the orbital and spin angular momen
tum vectors can he:p us in cur problem. We know (see QTi#, a3 referred to) that the Hamil-
tonien operaivr H, of Bq. (1.1), commuies with the =z cczmponents of ordital and spin angular
momentum, and also with the squares of the ragnitudes of these "nqular raomenta, L =~ +
L 2 : Lzz and sz + Syz + Szz. Thus we can separately Ciagonalize aii of these quantities.
and in fact in the final wave functiuns, which wa wish to arrive at, they are all diagonralizer.
Ths dizgonal components of the £ components nf orbdital and spin sngular mowenu.m are jusi
u,: and i (in uni*s of h/2v), and the diagena! components of L. + L. % + L % anas ? +
8.2+ 8,2 areL(L+1)andS(S+ 1) respectively, (see QTM, p. 482" where L and S are the
orbital and spin quanium numbers. In addition, of course the energy is diagonalizcd in these
final wave functions. In the arigine! dcternilusniai wave functions, the z components of or-
bital and spin angular momentum are diagonal, but the magnitudes are not, as we have seen
in the preceding section, where we computed their non-diagonal ma:rix components, uind of
couree the energy is not diagonal.

Now we remember that Schirddinger's equation HU = EU is really a device for finding
wave functions U with respect to which the energy ic diegonalized. Similarly we could set
up an operator equation, (sz + Syz + Szz) U = S{5 + 1)U, and {f we solved {t, the resulting
function U would make ths magnitude of the spin angular momentur: diagonal. We can go
further than in Schrddinger's equation, for we know in advance, by simple methods, that the
diagonal matrix components equal S(8 + 1), o that we do not have to determine these quanti-
ties. It can now ofien ve the case that this ¢quation for the spin angqular momcntem zan be
solved more conveniently than Schridinger's eguation. For one thing, it does not depend on
specific dstails of ths energy operator, 4o ti:at it can be solved oncs for ali for large clusses
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4. SCLUTIONS OF THE SECULAR EQUATION PROBLEM FOR AN ATOM

of problems. The resulting functions U will ther have close relationships to the fins! solu-
tions of Schrddinger's equation whnich w2 desire. There will, however, be widezoresd degenes
acy in the soluuons of this spin ejquation. We see, by snalogy with Schridinger's equatica,
that any two wave functions assoclated with the same S value, or same multiplicity, will act
UHka Z2oginc: nic states, and the equation will not uniguely determine the solutions, out only
linear combinstions of them. Thus we cannot hope to solve our whole nroblem by the use of
these cpersators. But we can at least zeparate out the wave {uuctions associated with the dif-
feren: multiplicites, and this i3 the sort of thing we are trying to dc.

We can make our argument clearer by using one or two examples, Let us first take
the familiar case of two non-equivzlent s electrons, whe-e we have a singlet and triplet. We
know that we have four determinantal states; one, with Ms = 1, with two + apins: a second,
with MS = 0, with the first orbital fuiiction {which we may danotc a} having a + spin, and the
second (whi :h we dinote b) a - spin; a third, aleo with Ms = 0, with a havings spin, b
having a + spins and a fourtn state, with Ms z - 1, with both - spins. From the rules for de-
terminirg the matrix components of S z, S + Szz. from the preceding scciion, we find at
once that the first and fourth states hnve dingonax mairix components equal to 2, and no non-
diagonal matrix components connecting them with any other state. This is as it siwuld be;
they both are ¢ 'nnected with the triplet state, for which the diagonal components shou'd be
Qi + 1y = 2. The states 2 and 3, with Ms =z 0, have diagonal matrix components of unity, and
nen-diagonal matrix components also of unity. Let us now consider the resulting secular equa-
tiva.

Let U,, U?, be the determinant:! wave functions asscciated with these two states of
Ms = 0, and let us wrlte the linear comblnation whtch we nrz-e leoking for T\ U, ~ T,l,. We
wish to choose T, 'I‘z so that the equation (S + Sy NT.U, + TzUz) = $(S - I)(T,U, +
LZUZ) wili be satisfied, where we are to insert $ = 0 for the singlet, S = 1 for the triplet.
In the usual way we multiply the eyuaticia above first by U l" then by Uz*, and {n each case in-
tegrate over coordinates and sum over sf n, and use the orthcaormal properties of the U's
Then we have the matrix-squations

[(sx + sy +8,%),, -5 1)] T, + 5,0+ sy2 +82), T,

2 2
x+sy

0.

(1. 10)

] 2 s rﬂ : z 2 =
M Sz )lZ Tl ' [(“x 4 Sy + Sz )32 S(S + 1)] TZ 0.

Here (sz + Sy2 + Szz)“ recrasents the (1, 1) matrix componeiit of the square of the cpin
angwler momentum. and s0 on. Putting in the knovin values of these matrix components, we
have

(s

[}
[=]

[1 - S(s + 1)]'.“l + T, =
(i. 1)

1
T, + [ - S(s + l)j'l‘z 0

“'he Rrcuiar 2quuticn assaclated with ih:ae two zimuitansous linzar cguetinns s cf cniurse
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1 - S8 + 1) 1|

o ———— ——

=0
1 1-s(s+1)|

whose sclutions are at once found tobe S = 0. 1, as we alrezady knew they shcuid be. If we

put 8 = 1 in (1.11), tc get the triplet wave functions, we find T, = T,. so that the triplet wave
function is the sum cf the functions U, and 208 {suiratlly normalized). Similarly putting S = 0

b——t

for the s'ngiet, we find T, = - T,. These results agree with those of elementary discussion
(see QTM. p. 196), but we have obteined them withsu:t consideri:g the form of the energy op-
erator at all.

The case just considered i8 of course trivial; but now let us consider three non-equiva-
ient s elec.rcns, which is not trivial. Let the orbital parts of the wave functions be denoted
by a, b, c. Then we have one determinantal function wi<h Ms = 3/2, with + spins on all three
orbitals; threc determinantal functions with Ms = x/z.. of which one has + spin3 on a and b,
a - spin on c, and the other two have the minus spin3 cn a and b respectively: three similar
functions with Mg = - 1/2, and one with Mg = - 3/2. We find at once that (sz + SyZ + Szz)
has 2 diagonal component of 15/4 for the staics of Ms = £ 3/2, and no non-diagonal components
! from these states to any others. These states correspond tc the quartet, for which the diago-

nal component should be (3/2)(5/2) = 15/4, as is found. For the states with Mg = 1/2, we

equal to 1. U we then set up a linear combination TlUl + 'I‘ZUz + T3l13 of these functions,
\ ‘and proceed as before, the three equations analogous to (1. 11) are

| [7/“3(8*1)]Tx*Tz*Ts“°
T, + [7/4 - 58 + 1)] T, + Ty =0 {i. 12)
T, + T, + [7/4 - S(S + x)]'r3 =0 .

I We verify at once that the secular equation arising from these equations has & single root

8 = 3/Z, an! a double root S = 1/2, correspurding to the quariet and the two doublets. If we
set S = 5/Z {n Eq. (1.12). to get the T's corresponding to the quartet, we find

-le#'TZ+T3=0.T!-ZT2+T3=0.T1+T2-ZT3=O

whose sofution {s at once found to be T, =T, =Ty. Thus the quariet function is the sum of .

Ul' Uz. and U3, properiy normalized. If on the other hand w: set S = 1/2, to find the doub- :

lets, we find that all three equations reduce to one. T! + 'I‘z + 'I‘3 = 0. o
This single equation 'I‘l + 'I‘z + 'I‘3 = 0 does not uniquely dete:mine the wave functions :

of the two doublets, and we should not expect that it would. We can see what is happening bet-

ter if we look ai it geometrically. We rcinember that a wave functic. can be represented as

a vector in a many-dimensional space. In our case, the three functions U,. U, Ujycan be i

regarded as three orthogonal vectors in a th-_. dimensionsl space Then the combuination

[ ’z4'
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4. BCLUTIONS OF THE SECULAR EQUATICN PROBRLEM FOR A ATOM

T,\U, ¢+ 'I“ZUz + T,U, 13 a voctor i this space whose components along U UZ' and U3.
which we may regard us unit veciors, are Tl‘ TZ' and T3. The ecuation T, = TZ ~ T3.
which holds fcr the quartet functions, mesns that this function is repreacnted by a unit vector
aiong the disgeral of the {irsi octant, making cqual angies with cach ol the axes. The nther
=S veltors, reproscnting the two doublets, musi be orthogonai to this vector, or must lie in
the plane normal to {t. But we have found that these doubiets are determined by the equa‘ion
Ty + Ty + Ty = 0, which, like the equationx + y + z = 0, is just the equation of this plane,
We may chanse any two unit vectors at right angles to each other in this plane, and they will
then be suitable functinns to represent the doublet functions. We may then find the matrix
components of the Hamiltonian fur.ction with respect to these two functions, and solve the re-
suiting quadratic secular equation, ylelding the two doublet energy levels and wave functions
ol the problem. Thus we have avoided having ¢c solve a cubic secular equaiion between all
three states with Mg = 1/2.

In order to set up the secular ~quaticn between these two doublet states, we must find
the matrix components of energy with cespect to thesc wave functions of the form Ty, +
'I‘ZUz + T3U3. when we kncw the matrix components with respect to the U's. This is a
straightforward probl:m in thc transformation theory of matrix mechanics: the problem of
finding the matrix coinpouents of any operator with respect to the transformed wave functions
Z(j) leUj' when we kncw the matrix components of the cperator, which we may take to te
HU' with respect to the original functions U. This transformation theory was worked out in
the beginning of the development of matrix mechanics, appearing in the origiral papers of
Heiscenberg and others, already cited. It is thus a familiar theory; but since it is not taken
up in QTM, it may rnot be familiar to the reader, and for that reason we show how to carry out
the transformation. The matrix compeaent of an operator like H, with respect to the original
functions U, is defined as Hlj = fUi‘ HUj dv. To find the matrix components, which we shal
define as Hu'. with respact to the transformed wave funciions, we obviously have

Hy' = Jr(z(") Ty* U, B (T(m) T, U, Jav
{i.13)
= Llon) Tys e, Ty

This simy.e formula contains enough of the trarsforma‘ion theory for our prcsent purposes, or
for most purposes. The T's cre determined by our discussica of the spin operator, as men-
tioned above, tic matrix components Hkn are computed by the usual rules with respect to the
original determinantal wave functicns, and Eq. {!.13) allows us at once to set up the mairix
components HL"' with reapect to our combinations of determinants, cct Gp v diegonalize the
magnitude of the angular mrmentum. 1hus we have all the necessary ingredients for making
use cf the spin {n ihe process of solving cur secular equation. in the ,roolem of a complex
spectruna.

We have s?.n "ow we can help solve the secular ecquation by use of spin anguiar mn-
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THE DETERMIONANTAL METHOD FOR ATOMS

mentura, In the evomr-le we chose, of three non-equivglent s electrons, there is of course no
orbital angular roomentum, so that w¢ can muke no use of it. But in cases where therve is or-
bital angular ‘nomentum, the diagonalization of tiie sp:n will not accomplish all that is possible
pefore ‘we write the secular equaticn. In such a case, among the solutions corresponding 2 a
given ML and MS’ we have solutions corresponding ;zo d‘.ffe;ent spzlns S. and alse to different
azimathui quantuin numbers 1,. By diagonalizing Sx + Sy + Sz . we shall he left with e
degesieracy between the states correspording to adifferent L's. We can then carry out the same
orocess cver pgain, but now applizd to orbital angular momentum. That is, we can take the
transformed wnve functions corresponding to & given value of Ms. ML' and S, and tranform
the aperator L + L Lzz Yo ihis set of wave functions, using the type of transformation
given in Eq. (l. 13). Then we set up a secular equation for diagcnalizing this quantity, just es
we did earlier for the spin. This will allow us; to find new wave functions, combinations of the
viies found before, which make both the magnitude of the spin and of the orbitui angular mo-
mentum diagonal. The en'ergy operator wiil have no non-diagonal matrix components between
the states of dificrent S and L, so that if we transform the cnergy operator to these functions,
we shali be in peaition to ast up the secular equation for the energy.

This is as far as we neé&d to carry the problem, if we are considering only electrostatic
energy. If wo are including also the magnetir intera~tion terms, however, we must go fur-
ther, We chall not discuss ‘he nature of these terms ia the Hamiitonian in detail at prescent,
but for our present purposes we need only note that they take the form of torques batween the
orbital and =pin angular momenta of the various electrons, torqucs inteinal tc the system,
that they allow the total angular momentum of tiic wiioie atom to be conser: ~ =t 2--ir5y L.
conservation of the orbital and spin angular momenta separately. In other words, once these
terms are included in the Hamiltonia:i, the quantities measured by Ms, ML' S, and L are no
lcager coustants of the motion, but J, which renresents the magnitude of the vector sum of
orbital and spin angular momentum, and MJ, its component along the axis, will stiil be con-
served. In other word-. the totel Hamlltonlan stﬂl commuteeg with the operators represented
byS, + L, andby 3 * + Jyz s(s, L) s (sy + Ly)" +'S, + L)% which tn turs
equals(sx + 82+ s LB+ (L2 : Ly 2+ L z) +2(,L, ¢ S,L+ S,L,). Letus thendi-
agonalize this qumt!ty. S'nce S 2 4 y“ + Szz and L % + Lyi + I..z2 nave already been di-
agonalized, and since bcth these guantities cen be easily proved to commute with le"x +
S I"y + S L 2+ Wecan diagonelize tho latter quantity without destruying the diagonaiization of
the magnltude of spin and orbital angular momentum (though this diagonalization will be de-
si.uyed when we diagonalize the magnetic interaction in the Hamiltonian). Since we have noted
that stx + syl‘y + Ssz involves non-diagonal components between terms with different MS
and ML. but the same M}. we shall find that (iis diagonclization, which we can carry out by
the same procedure a3 previously, will lead to final wave functionas whi:h z=e comhinntions of
several of our earlier functions, all corresponding to the same S end [, values, but with dif-

feroent Ms and M though %~ srane MJ
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4. SGLUTIONS OF THE SECULAR EQUAT.ON PROBLEM FOR AV A'TOM

Each of the finn! wave functions which we huve obtained in this way corresponds to a
definite S, L, J. and HJ. The matrix of the electrostictic part of the Hamiltonian is diagonal
witii respect ¢a thesc wave functions, as fur ac non-dirgonal «orm,onents betwcen dilieient S
and L values ure concerned. Let us assurne that we have 0lved the resulting secular equa-
tions for the eiec.rostatic energyv. so that we have compleleiry diagonatized the electrostatic
energy. We huve then secur=2 {he correct wave functinas to describe the.L.-S or Russell-
Saunders coupling, in which we assume the magnetic Iuteraction to be negligible compared to
the electrostatic terms. Next we set up the matrix commpoueats of the magnetic energy. Tlis
can easily be done (though we have not showa how to do it} in the original determinanial wave
functions. We have found the complete transformation from these functions to cur final func-
tions expregsing L -S coupling, with J diagonalized. We find that we have non-diagonal matrix
components of this magnetic energy only betweer. functions with the same J value, as we see
from the fact that the complete energy operator commutes with sz + Jyz + Jzz. but there are
non-dlagonal matrix components between states with ditfferent S and L values, since in the
pressnce of the magnetic torques the spin and orbital angular momenta are no longer constants
of the motion. In case these non-diagonal components are small compared to the energy sep-
araticn between the multiplets, we have the case of Russell-Saundars coupling. In that case,
for a first approximation, we can disregzrd these non-diagonzl matrix components. The di-
agonal matrix comgonents of the magastic energy will then give the correct multivlet seoara-
tions, and from the form of the magnetic energy we derive the Landé interval rule, and other
properties of the muitiplets mentioned ir the references already given.

If the nen-dizgonal matrix components of magnetic energy between different multipiets
are not negligible, however, we must s0lve a secular equation between all states of the same
J value, and there is no way of further simplifying this secular equation, though we know its
matrix components. The risult will be e deviation of the multiplet separations from the Landé
interval rule, and from R.ssell-Saunders coupling. In the extreme case where the magnetic
energy is large compared to the electrostatic torms, which can occur in some cases with heavy
atoms, the o.parture from Russell-Saunzers counling can be complete, and we can have what
is called j-j coupling. We do not have to do anything different to <olve our problem, however:
the scluticn of the scculur equation between all stat- _f the same J value wiil still give the
final energy levels of the problem.

The only remaining complication which is ordinarily introduced is to impose an external
magnetio iieid, resulting in the Zeeman effect. It is easy to find the matrix components of this
exierns! magnetic energy in the original, determinantal wave functions. But by the various
steps which we have outlined, we now know the complete transformation from these original
determinantal functions to the final functions, taking account of electrostatic energy and of the
magnatic interactions within the atom. In the preserce of an external magnetic fieid, J is no
longer a coastaut of tha motion, only MJ b2ing constant. Thus we have non-diagonal matrix
components of the external magnetic encrgy between states of the same M vut different J. If
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tke megnetic ficld is small, these non-diegrnai mairix components can be neglected. If it is
large, however, they must be considered, and we must solve a final secular equation between
all states of the same MJ. In the case wherec we neglect the non-diagonal matrix components,
we have the ordinary Zeemaean effect: {f wo huve to consider them, we have the Paschen-Back
effect, which occurs when the Zeeman spiitting is comparabie with tlie separaiion between
niultiplet levels in the absence of the magnetic field. Tue procedure we have outlined, in
princtple, nllows us tc find this Paschen-Back effect in all interimrediate cases Letween Russell-
Saunders and i-) coupling.

We have outlined in this section the general trea.ment of the secular equation for the
probiem of a complex spectrum, including all tiie types of 3implification which can be deduced
from the angular momentum relations. With thic traatment, a ceriaia part of the theory of
complex spectra is really complete, though of course we have not worked out detailed examples.
The theory was worked out by a number of nersons, in the years lmmedin{ely following the
development of the determinantal metnod in 1929. Among them we may particularly merntion
E. U. Condur and G. H. Shortley, as well as M. ii. Johnson, Jr., to whom we have already
referred. The well-known text by Condon and Shortiey sunmumarizes most of this work, though
the ©-izinal sspers are often easier to read than the text. We give below a bibliography of
some of the principal papers dealing with the determinantal mzthoa as spplied to complex
spectra, mostly in the period from 1929 to 1935, when Condon and Shortley's Theory cf Atcmic
Spectra {Cambridge) was published.

Bitliograpiyy on Theory of Complex Sp-ctrs

J. H. Bartlett, Jr., Phys. Rev. 35, 229 (1930); 38, 1623 (1931).
E. U. Condon, Phys. Rev. 3%, 1121 (1930) 43, 648 (1933).

E. U. Condon and G. H. Shortley, Pays. Rev. 35, 1342 {1930); 37, 1025 (1931).
E. U. Condon and C. W. Ufford, Phys. Rev. 44, 740 (1933).

J. A. Gaunt, Proc. Roy. Soc. {London) 122, 513 (1929).

S. Goudsmit, Phys. Rev. 35, 1325 (1930}

N. M. Gray and L. A. Wills, Plys. Rev. 38, 243 {i531).

P. Giitinger, Z. Physik 64, 749 (2930).

P. Guttinger,and W. Pault, Jr., Z. Physik 67, 743 (1931).

W. V. Houston, Phys. Rev. 33, 297 (i929).

. Inglis, Phys. Rev. 38, 852 (1931),

. Inglis and N. Ginsburg, Phys. Rev. 43, 194 (1933),

. Inglis and M. H. Johnson, Jr., Phys. Rev. 38, 1642 (1931).

. Johason, Jr., Phys. “ev. 38, 1628 (1931); 39, 15 (1932); 43, 627
(1933); 43, 632 (1933). - -
Shoriiey, Phys. Rev. 40, 185 (1932); 43, 451 (1933); 44, €66 (1933);
s¢, 1072 (1936); 57, ZZ5 {i940). - ==
Shcrtley pud B, Tricd, Phvs. Rev. %4, 7139 (1938).
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5. THE HARTREE-FOCK METHOD

5. The Niriree-Fock Method

iIn the preceding sections, we have beex handling principally one aspect of the deter-
minnntai method for atoms: the solutior of the secular 2quation bciween a number of difierent
deterininante! functiuns, made up out of one-electron srbitals. iNoww we turn to the cihier as-
pect of the prcbiem, the choice of one-electrorn orbitels. [‘irst we consider the case where
we are dealing with cnly a single determinantal function; i this casc we are led to the Hartree-
Fock method.

™n Section 1, we have mentivued iiwni 1ias tree arrived at his self-consistent field ir.ethod
in an intuitive manner. It occurred independently, however, to the present writer(‘z) and to
Fock.(“) that {t ought to be posaible to derive Hartree's equations in 2 strzightforward manner
from the variation principle of quantum mechanics. 1f H is the Hamiltonian operator for a
given problem in quantum mechanics, and {f u is a normalized, but otherwise arbitrary func-
tion of the coordinates and spins of the particles of the problem, then we may construct the
diagonal energy Ju*H u dv. This will have a definite value for each value of the functicn u.
Tlea we can show that if u is one of the correct wave functions of the problem, this energy
integral is stationary with respect to small variations of the wave function. That {c, if « de-
parts from one of the correct wave functions by a small quantity of the first order, the diago-
nal energy w!ll depart by a small quantity of the e2cond order. This result, which seems very
rlausibie from the known behavior of the perturbation theory of quantum mechanics, is easy
to prove, and we shall give a proof presently, in case the reader is not familiar witi: it. In
pni'tlcular. if we are dealing with the lowest staticnary state of the problem. the diagonal en-
ergy takes on a minimum value for the correct wave‘unctlon of the problem: no incorrect

- wave function u can give as low a value for the energy integral as the correct wave function.

If now we have a function with a number of parameters in it, we can get a certain
amount of variation into the function by varying the values of these perameters. If we com-
pute the energy integral fu\‘ H u dv as a function o these parameters, we may reasonably
nope that if we choose those values of the parameters thet mane the eticrgy integral a minimum,
we call obtain the besg approximation to the ground state of the system which the given func-
tion is ahle to take on, by variation of i{ts parameters. There {8 on2 particularly simple case
of this method. That is the one in which the assumed function is a linear combinatiou oi «
nunber of given functions, s that the coeffir-ients in this linear combination are the parame-
ters in question. Then it proves to be true, and we shall prove it shortiy, that the result of
the variation method is jist the same as the result of the ordinary perturbation method, which
also deals with 2 snm of a number of unperturbed functions. But the variatioa inethod is much
brosder thap this, for the paramet2rs can enter into iue funiction ‘n ery arbiirary '.','ay.' and
still we csn vary theae parameters to make the energy integral a minimum. For iustance, we

25 c. siater, Phys. Rev. 35, 210 (1930).
*3V. Fock, I. Phvsik 81, 126 {1930}
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THE DETERMINANT AL METHOD FOR ATOMS

may peve a wave function whose general shapez is known to be ceorrect, but whose scale is not
fixed: we might use a more extended or more concentrrted wave function. We can compute the
energy as a funciion cf the scaie factor, vary this to make the encrgy a minimum, and thus get
tte best approximation to the wave function of the ground s.ate. We shall ment‘on such applica-
tions later.

The application of the variation piinciple leading io the Fartree method 18 a broader
one, hewever. Suppose we apprcicimate the wave function of the n-eiectron problem Ly the
product of one-electron functions “l(xlsl) 5 Q “n(xnsn)° We can ~cmpute the energy integral
for this function. We can then ask what one-electron functions uy . o.oug will make the energy
integral a minimum. This quesiion can be formulsted mathematically, and it leads to partiai
differential equations foir the functions n, . o.u, which, with very minor qualifications, cre
the differentidl equations to which Hartree had already teen led intuitively. If instead of the
simple product of ons-electron functions we take the determinaniai function of Eq. (1.2), so as
to take proper account of the antisymmetry of the wave function, we can again compute the en-
ergy integral, and can again vary the one-electron orbitals to make the energy a minimum.
This leads t2 slightly different equations, and these are generally culled the Hartree-Fock
equations. These equztions, then, give the best one-electron orbitals to use ii: constructing
a single detarmincntal approximation to the true wave function of the ground state of a system.
We shall now go through the problem of setting up these equatinns i et 2 asuull then in-
vestigate their rnature aad iLcauing.

Firs¢, wec consider the variation mcthod itself. It is well known that very generally
the differential equetions of the tyre of _Sch:édinger's equation can be derived from variation
principles; the reader acquainted with the general theory of the Sturm-Licuville equation will
be famtiliar with this fact. Schrédinger, in his firtt paper setting up wave mechanics, set up
a variation principle from which he derived his equation. The integral which he used is slight-
ly different from the intcgral fJu* H u dv which we sre considering: in place of the Laplacian
cperator to represent the kinetic energy, t*.e square of a gradient eppears. Schrédinger's
form {s the correct and-more general way (o write the variation principle, but the form wkis}.
we nave described can be derived from it in a great many cases, and is satisfactory for most
crdinary apgplications {the cxceptions comne where there are surfaces over which the function
v has a discontinuous slope}. We do not wish here to give a general discussion of variation
vrinciplea, but shall merely give a simrlified discussion of the princiyle as applied to Schro-
dinger's equation, sufficient for our present purposes.

Let us cunsider the energy integral fu* H u dv, and let us make a small change in u,
su that it changes tou + §u, where 8u, like u, is a function cf the coordinetes and <pin. Of
course, we must make a corvesponding caange 6u® in u*. Then the change produced in the
energy integral is f&u‘ Hudv + fu* H 8u dv. We wish to have this change a small quantity
of highor nrder, provided u remains normaiized. This proviso can be stated by saying that
the normalization integral Ju* u dv is to Le unchanged, or that its change, which we mav
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write as JBu* udv 4+ Je®gu v, (5 zers  We shall firzst chow that the second iorm fn 2ach of
these expressions is merely the coinplex conjugate of the ftrst.‘ ‘This is obvious wiih tiwe DOr-
maiization integral, wherc the second term may be written ns[ v u* dv. With the energy in-
togral, it {3 also obvious witn the potential energy term. Thu; let the potential encrgy oper-
ator be V. Then the second term in the variation of the potential energy integral is ?u‘ \'
§u dv, which is the conjugate of J8u®* V udv, since V {is always real. ’

with the kinetic energy integral, we must use Green's theorem. Thus if we hed g proo-
lem with only one particle, H would involve the operator VZ. Now by Green's theorem,

f(u‘vz da - 5uvz u*) dv =f(u‘ grad u + n - &du grad u* - n)da .
where the right-hend side represents a surface integral over the surface bounding the volume
of integration, and n represents the outer normal. In the ordinary cases, with Schridinger's
equation, the integration can be over all space, and the surface integral vanishes. Thus we
see that the kinetic energy term in Ju* H $u dv {3 the conjugate of that i1. f Su* Hudv. Our
proof applies directly only with one :mrttcie. bu! the extension to many particles is very sim-
ple, using a many-dimensional form of Grcern's thecrem. We thus have shown that the second
integral in both of our expressions is the conjugate of the firat. If,then, we can demand that
the variation J Su* H u dv be a small quantity of higher oider, for all variaiions &u® for
which the variation j&u® u 2v {s zero, we shall have proved cur poirt for thc compiex con-
cuvete «7 fou* Hu dv will =1so be small of higher order, and the complex conjugate of J&u‘
w v will also be zero. The recult is just as if we varied only u®, leaving u unchanged.

In the preceding paragraph, we have merely asked how to state the condition ihui the
energy integral be stationary for all changes of u which leave u normalized; we have not yet
asked what results from this condition. As a step {n asking this question, we use the method
of undctermined multipliers, which is generally used when we have a variation problem with
a subgidiary conditicn, such as our normalization condition, If it were not for this subsidiary
condition, we could state the con2cguences of having the energy integral stationury at once.

If the integral J6u® K u dv is to pe a small quantity of higher order, independent cf gu®, we
must clearly have H u everywhere zero, for f it were different from zero :or any value of the
coordinates, we could let Su#* be different from 2ero uvuiy tu that neighborhood, and we snould
certainly find that the integral was not zerc. This is the usual procedure used in the calculus
of variations. But when we have a subsidiary condition, we demand not that H u be ¢verywhere
zero, but only that a linear combination of Hu and of u, the quantity appearing in the other in-
tegral j8u®* u dv, be everywhere zero. Let us write this linear combination Hu - Eu, where
E is a constant (which we shsll shortly connect with the ordinary energy of the Schrddinger
problem). If now we demand that Hu - Eu = 0,then we shall have j&u' Hudv = E f&u‘ u dv,
so that | Su® Hu dv will clear.y Le zero ior any variation §u* for which | §u®* u dv = 0, just
as we desire. But Hu - Eu = 0 is just 3chridinger's eguation, where now E evidently is the
ordinary guervy appecring in the: squatiop. Thusg wo show that the cordition that the cnergy
intc;ralj&u‘ Hu dv be stationary, for any vorfation $u which leaves u normali..ed, is that v
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catisfy 8chr8dingcr'n equation. This is the theorem which we wished to prove. Of course the
encrgy integral will differ by smal! guantities of higher order {rom its stationary value, and .

with some types of variation vi U {{ mayv inciense, with othker types of variation {t may de- !
crease. This is like the bzhavior of a function of several variables, at a point where it is !|
stationary. Generaliy this point is what is called a saddle point, and nat a3 true maximum or i
mintmura. But clearly for ihe ground s‘ute of the system, which by definiticn has the lowest i
energ, level, the energy integral cannot decrease with any type of variation of u, for if it did, ;
we should eventually come to a still lower stationary value, and a lower eigenvalue, which :
would contredict the postulate that we were dealing with the giround stete. I
The arguments which we have given aie 12! presented with mathematical rigor, but i
{ the rigorous proofs can be given, and lead to the same results which we have stated. Let us
now see firat how the variation methid leads at once to the ordinary secular cquations of per- |
| turbation theory. Suppose we liave a set of orthogonal functions u 1 - Yy und that we try to .
expresa u as a linear combination z(i) Ctu‘ of these functions. We ask wiiat combinaiions
best represent true solutions of Schrddinger's equation. The integral j u*(H - E) u dv equals |
2(1. ) C"«'.?j fu“ (H - E) u dv. We'have seen that if we set the variation of this integral
equal to gero, when only u* varies, we shall obtain our desired condition. In particular, let

us vary u by allowing only one of the Cié’s to very; in effect, we set the partiai derivative of
the integrai with respect to C“ equai io zero, not varying the Cj's. Then, remembering the
definitior. of the matrix componants Hﬁ of the energy operator with respect to the functions ugp
and remembering their orthogonality, the equations resulting ar= Y (j) Cj(alj - Egyy) = 0.
But these are just the ordinary equations resulting from the perturbation method (sse for in-
stence QTM, Eq. (4.1.3)). Thus specifically we show that the best way to combine a finite
set of orthogonal functions to gat a lin:ar combination representing the true solution of Schrd-
dinger's equation is by setting up thes¢ ordinary equatiins betw.-en them, following the pattern
of the perturbation theory, and resultirg in a secular equation for the energy.

Now we ar= >miliar enough with the variation methed to proceed to our problem of the

Hartree-Fock ejuations. We are required to set up a single determinant of onc-slectron or-
bitals; to compute the diagonal matrix component ¢! II with respect to this determinant; and
to ask how this diagonal matrix component varies when any une of the one-clectron orbitals is
varied in an arbitrary manner, subject only to the conditior thet this one-electron orbital re-
main normalized, and orthogonal to each of the other orbitals. The resulting variaticn n.ust
be a2 amall quantity of a itigher order, when any one of the orbitals {8 varied. We may use
(Eqs. (1.1) and (1.5) to compute the required matrix corzyonent. Setting up the problem of a |
single atom of nuclear charge Z units, the integral J u* H udvis !

Z(t)ju“(x,)i-vlz - 2Z/r|) u/(x,) dv,
+ ¥ (pairs 1, j) f“t‘(xl) ujt(xz)(zlrlz) ug(x,) uj(xz) dv,dv,
2 2(palrs i, §; apin j = spin {) uit(x!) "_a‘("z)(z/"lz) uj(x") “1("2) dvld"z . :
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‘ 6. SIGNIFICANCE OF THE HARTREE-FOCK EQUATIONS

We now vary one of ine u*'s, say “1" The resulting varied integral is A

ii . /“1""1““’12 - 2Z/r)) uylx;) dv) u
i '
5

+ Y(i#1) f&ui‘(xl) uj‘(xz)(Z/rlz) u;tx;) uj(xz) dv,dv,

- Y(i#4 spin j = spin {) f&uit(xl) uj‘("z)(z/rlz) uj(xx) ui(xz) dv,dv, . - ’]
Now we wish to make this varistion zero, for all variat.cns 6u," which leave ut‘ normalized, !

\
‘1 or, which have f’ﬁui? v dv = 0, and which leave it c.thogonal to all other u's, or which have
| ) f“i‘ uj dv = 0, or aui‘ uj dv = 0. By the method of undcrtermined multipliers, we may !

set 2 linear combination of all the various varied integrals equal to zero. That is, we may
‘ write our condition ‘

(-V]z - 22/r)) uy(x)) 1'
i

! + 2(’ #1) qu‘(xz)(z/rlz) uj(xl) dvz] ul(xl)

. N, (1.14)
- E\j #14; spinj = spini) L/ uj‘(xz)(z/rlz) ui(xz) dvz] uj(xl)
= 2(” xij uj(xl) .
The ejquntions (1. 14) are the Hartree -Fock equations for the orbitals ut(x). We shall now go 1
on to discuas their significance. !
' 1
6. Significance of the Hartree-Fock Equations

‘ Refore we take up the general Hartree-Fock equations, let us exarmine the simnlified

form which they take when we uce only a product cf orbitals as a wave function, rather than

‘ the determinantal function. In this case, the last term on the left side of Ea. (1. 14) {s m!ics-
ing, tor this term, {f we examine the derivation of £4. (1.5), comzs fi om imerchanges of or-

‘ bitals which occur orly with ike determinantal function. Kurthermore, there is no require- \

ment in this case that the one-electron orpitals be orthogonal, so that only the term fori = j !

on the right side of 'i'-:q. (1.14) {s present. Thus we have the simpli/ied equation

(-9,% - 22/r ) ntx))

+ Y(# 1)[fuj‘(xz)(a/rlz) uj(xz) dvz] u(x;) (1.15)

»

= e ui(xx) A

s 8 | A e <t MU - P

i where we have used L in place of x“. This equation has a very simple meuning. The quan-
| tity 2.(5#1) fuj‘(xz)(Z/rxz) uj(xz) dv, is simply the electrosiutiz potential, at point x,, of the
cuarge distributions uj‘ u‘.' of all cther electrons. In other words, Eq. (!.15) states that 4y is
the solution of an wrdinacy Schrodinger equation for the motion of an electron in the field of the
aucleus, sna of al] the <thei electrons distributed according 0 the wave funcrions u, The
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THE DETERMINANTAL METHOD FOR ATOMS

encegy {> the one-electron eneirgy of this problem. But this condition, with a trifling reser-
vation, is just that to which Hariree was led by intuitive reasoning, and which he made the
basis of his calculaticn. The trifling exception is that the potential as Jdetermined from the
char ge distributions of all other electrons i3 not generelly sphericaliy symmetrical, end Har-
tree uged the average ¢! this potential over all directions, to get a spherical potentiz!, sc as

to be able to carry out thc solution of Schrédinger's cquation. We thus see how Hartree's
method really gives the best one-electron orbitals, provided we use a product ¢f such orbitals
as a many-electron wave function.

Ivow let us ask what is the physical meaning of the additional complications present in
Eq. (1.14). In the first place, we can show that the right side cf Eq. (1. 14) can be simplified:
we canr always choose solutions uy 80 that the guantity x,‘ . forms a diagonal matrix, and the
right side of (1. 14) cau: be rewritten as il ui(xl). just as we have written it in{l.15). We shaii
not give the complete proof of this atatement, but can 2asily give the physical reason behind it.
It is a characteristic of a determinantal function, iika that of Eq. (1.2), that we can make up a
new determinant out of it, by setting up new orbitals “l' s un' which are formed frcm up .. oup
by a unitary transformation, and the new determinant will have a value identical with the ori-
ginal determinant. It {s obvious, then, that our variation method, which makes statements only
about the determinant as a whole, cannot uniquely determine the u"s. Any set of orbitals de-
termined from them by a unitary transformation must equally well satisfy the variation prin-
ciple, and hence the Hartree-Fock equations. But we can investigate the behavior ¢f the ma-
trix )‘lj when we make such a unitary transformeation, and we find that it transforms just like
ordinary matrices. It is pcssible, then, to tind a unitary transformatior of the ut's which
makes this matrix diagonai. We Jdo not lose in generality, then, if we assume from the begin-
ning tnhat it is dlaéonal. and for most purposes this is a desirable feature. We shall then =22~
s:me it in our further work.

The resulting Hartree - ock equation has been the subject of a good deal cf discussion,
and has been made the basis of considerable calculatic... Among those contributing to its under-
standing were Dirac;’ (44 )Brmouln. (45)
not s0 stiaightforward in the matter of the interpretation of the spin as the derivation we have

)
and Hartree. (=) The original formulation of Fock was

given, which resembles more those of the writers just quoted. Har‘ree and others have made
numerical calculations, using Eq. (1.14), for a number of atoms, and the results differ sig-

nificantly from those of the original Hartree =quations. By now, calrnlations have been made

for a good uiany vtoms, by one or the other cf the methods. (47) The quantities forming the

44p. A. M. Dirac, Proc. Cambridge Phil. Scc. 26, 376 (1930},

451, Brillouin, Les Champe Self-Ceonuistents dc Heruree et de Fock, Actualites Scientifiques
et Industrielle: No. TEQ (MiFmena =T ~Te — Parla 1! E)

465, R. Hartree and W, Hartree, Proc. Roy. Scc. {(London) A150, 9 (1935)
47

For a very complete listing of the r:coms which have heea inver'igated by thic method, with
refecences 10 the literature, see the 1951 edition 5/ Landolt-sornstein, Pnysikalisclc-
chcmische Tabellen. =
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6. SIGNIFICANCE OF THE HARTREE-FOUK EQUATIONS

last term on the left side of Eg. (1. 14), however, have been regarded as fairly mysterinus
and ¢illiczit ¢o interpret in a physical way. The present writer(“g" Qay recen
tn=se terms, {n such a way as to mnake their physical meaning -lear.

In the first place, we note that in the second and third term™s of Eq. (1.14), we can add
and subtract terms for j = i, without making any clwnge in the equation. In the third term, we
can 2130 muitiply and divide by ut*(xl) “1("1)‘ When we make these changes, Eq. (1. 14) takes

on the following form:

(- Vlz - ZZ/rl)ui(xl)
+ z(j) l.[r“j.(xz)(z/rlz) “j(xz) dvz] “1(xl)

-I- ZUS spin § = spin {) fui‘(xl) uj‘(xz)(z/rlz) ‘ij(xl) “1("2) dvz . (1.16)
L u g (x ) ux ) uylx,

= g iRy

The revised Joriu (1.16) of the Hartree-Fock equation shows that u; is the solution of a Schré-
dinger equation with a Hamiltonian operator which is the sum of the kinetic enargy, the poten-
“tal energy in the ficld of the nucleus, the poiential energy in the field of all eiecirons {includ-
ing the electron whose wave function we are finding}, snd a correction term, the last on the

left of Eq. (1.16), involving exchangc integrals. It is th'~ iast term which we wish to interpret.
Since we can be quite sure that the electron does not i+«l'y exeri = Coulomb interuction in it-
self, it is clear that somehow this last term nuus-t correct for the intzsaction of the particle
with itself, whi:h is erroneously included in the second term of Eq. (1.16). We may regard
this last term on the left side of Eq. (1.16) as represeiiing the potential, at the position x, of
the el..ctron in questica, of a charge disiribution at point x 2 of magnitnde
ul.(-"x) uj.(xz) -l(xl) ui(xz)

- Y (s spinj = spini) — (1.17)

uy*(x,) uy(x,)

Since this churge density is connected with ‘he exchange ierin in Eq. (1.16), we may call it the

exchange charge density.
We can esslly nrove (wo orouperties of the exchange charge density. First, its total

amount is one electroaic charge (which equals - ! in atomic units). To prove this, we integrate

over dx‘. ‘We use the orthogouality of the u; and uj's (whicn we ghall prove shortly), to show
that ail tarms in ihe summation (1. 17) go out on inicgration, except for ;| = {, any this term
integratesu to unity. Secondly, at the point x, = x,, the summation (1.17) reduces to -z (jz.
spin § = spin {) uJO(xl) “j(xl)' or the total density of all electrons of the x~ne spin ae the {8,
at the pnsition x). These two properties will allow us to deduc. the general nature of the ex-
change charge density, and its physical significance.

- o e

48y, c. siater, Phys. itev. 81, 385 (i3>1)
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TIE DETERMINANTAL METHOD FOR ATOMS

The potential energy <7 the field in which the ele~tron moves, as given by the Hartree-
Fock equation in the form (1.16), is that arising frotn the nuclei; from all electrons oi sgin
opposite to that of the electron considered, as determined irom the wove £ nctions of taose
elecirons of opposite snin; but from a charge distribution of electrons of the san:e spin equal
to the tota! charge of these electrons, corrected for the exchange charge density. That is,
this charge distribution of electrons of the =ame spin adds up to one less than the total number
of electreons of this spin, or it includes all electrons of this spin with the exception of the one
whose wave equation we are considering. This is obviously as it should be. T'he net charge
dersity of eiectrons of this spin, corrected for the exchange chairge, goes tv zero at tne point
X where the electrnn is located, for we have seen that at X, = X, the exchange chai ge density
just cancels the total density of all electrons of this spiii. This is as if the electron whose
wave function we were firdisg carsried around with it a hole, centered on its position X such
that electronic charge of total amount one unit were removed from the immediate neighborhood
of its position. In other words, we may say that in the Hartree-Fock method each electron
moves in the field of the nuclei, of all electrons of opposite spin, but in the field of a charge
distribution of electrona of the same spin equal to ¢the total charge distritution of such elec-
trons, Simimsoed by a single electronic charge which is removed from this hole surrounding
the position of the electron. This hele is clearly a result, in a way, of the exclusion principle,
which kecps cther electrons of the same apin away from {t. For this reason, on account of the
close conaéciion of the exclusion principle with the Fermi statistics, it is often referred to as
the Fermi hole. Since the exchange charyge density (1. 17) has a different form for each wave
function u;. we clearly have a different poteatial ior sach ui iin:c2 wave funciions. The total
exciwunge chsrge, however, equals one electronic charge in each case, and its value wuen
X, =X, is in each case equal, so that the net size of the Fermi hole must be approximately
the same for each wave function, even though it may difier in shape and other details. Thus
we may commit 10 very great error ii we replace the actual Fermi holes, which are different
i0i each G by an averuged value taken to be the same for ail ui's. We shall discuss this pos-
sibiiity i{n a later section, after taking up some of the properties of solutions of the Hartree-
Fock equations.

- i ) s o e

7. Frupexiles of Solutions of the Hartree-Fock Equations

Before we go further {i discussing the Hartree-Fock equations, we shall prove two
proverties of their solutions. First, we shall prove that the one-electron orbitals u, derived s
frcm them are orthogonal. We have really assumed this orthogonality in setting up the equa-
tions themselves, Lul it does not seem intuitively obvious, from Eq. (1.16), since as we have
;ust seen each orbital is a solution of a Schrddingar equation for a differert potential. To prove
t:e orthogonatity, we procead as always in Schrddinger's equaticr. We set up Eq. (1.16) for
ug and multioly by u *(x,). Then we set up the Hartrge-Fock equation, like {1.16), for uk‘(xl),

replacing { oy k. pnd taking the conjugate, and iaultiply (ds Ly ul(xl). we iuen subtract viae

———— o e
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7. PROPERTIES CF SOLUTIONS OF THE HARTREE-FOCK EQUATICIS

of these quanittics from the other, and integrate over ilie coordinate dvx. Really, we should
include ihe zpir along with the coordirstes in: Eq. (i.i6), and sum over sptn as well ars inte-
grating over coordinates, in each case. On the rignt side, then, we shail heve (z‘ - e k)
f“k‘(xl) ut(xl) dvl. On the lcft side, most oi ike terms will automutically cancei, jusi as in
the conventicaal cas:? o!f Schrddinger’s equation. Thus we get rid of the Laplacian terins by
integration by parts in the familiar way, and the poter:iial energy terrms in ihe field oi ihe nu-
cleus, and in the field of all other electrons, automaticslly cancel. The only term which could
give troudble is the exchange charge terin. But when we write this out, we find that it cancels
155, 8o that we are left with the statement (ct - (k) uk‘(xl) “t(‘l) dv, = 0, which leads to
orthogonality just as in a conventional Schraodinger's equation. We acte that this is only on
account of the special form of the exchange charge density. The same proof does not apply,
as we can readily verify, for solutions of the ordinary Hartree equations. Those solutions,

- in fact, are not orthogona!, and this is one of the great sdvantages of the Hartree-Fock over

the Hartrce equations, since it is so mportant to have orttogunal orbitals when using the de-
terminantal meithod. We notice another fuct also, if we examine the proof carefully. This is
that the orthogonality of tvo orbitals connected with different spins ~omes from the summatton
over the spin coordinates (which we have not written down explicitly. but which chould be there),
rather than from thc inlegratica cver thc zpace coordinates. 14 does not necessarily fcllow
from the Hartree-Fock equations that the space part of orbitals corresguiding io diiferent spins
ara orthogonal ¢~ sach other.

The sacond result which we shall prove regarding the solutions of the Hartree-Fock
equations is Koopmans' theorem. (49) This ihecrem can oe very simply stated in words, as
follows: the one-electron energy 9 corresponding to a wave function u, forms e very good
approximation to the ionization energy required to remove the ¢ilcciron with wave function uy
from the atom. Since these ionization energies are well known experimentally, those corre-
sponding to the {nner electronic shells being th~ x-ray term values, this forms a good and sim-
ple rueck between the calcuiations of the self-consictent field method and experiment. ‘I'be
agrz=ement between the « "l ar: the term values was observed by Hartree in his earliest work
on the self-consistent field. In fact, {t was this agreement, as we have already noted, which
was =t the basis of the treatment of the seli-conststent fieid even before guaistum mechanics:
we aave qucted a number of workers who trted, partly empirically, to set up potentiais such
that the oue-electron energies of particles moving in these fields would agree with the observed
term values. The agrcemant betwee: the two is better for the Hartree-Fock equaticns than for
the Hartree equations, but still it is surprisingly gool even for the Hartree equations. We
shall now show how this sgreement can be justified theoreiically.

Clearly the way to find the energy reguired to remove o given electron from an atom is
to compute the total energy of the atom with the given electron; then to compute the total en-
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THE DETERMINANTAL METHOD FOR ATOMS

ergy of the atom lacking this electror; and to take the differcnz:. This would properly umply
solving » separate Hartree-Fock problem for the atom and the ion. Alil the one-electron or-
bitals would be slightly different, since the screening of each electron would vary depending

on whether the slectron were removed or not. There would be no way to compare the { ¥o prob-
lems, that ~f the atom and the ion, except by numerical calculations. Furthermore, the ion-
ization energy is often a very si:aall fraction of the total enc.-gy of the atom, so that we should
be caiculating two very large quantities, and taking the small difference, and this would be
very inaccurate. This method is then not practicable, i1 most cases.

As a substitute, we may take advantage c! tho perturdbation theory, which says that if
we use a wave function whick {s wrong by & s:aall quantity 2f the first order, the energy com-
puted from it will b: wrong by only a smali guentity of the second order. We use this theorem
in the following way. We use the correct Hartree-Fock wave function for the atom. For the
ion, however, we maic up a determinantal function out of the same one-elcctron orbitals fourd
for the atom, but simply omitting the orbital related to the removed eleciren. We then com-
pute the energy of the ion, using this deterimninantal function, which of ccurse is alightly wrong.
The energy is wrong by only small quantiiies of the second order, 30 that .f we subtract tnis
from the energy of the ator:, the ¢rior in the resulting calculation-of ionization eneryy will de
smull. But our calculations are made very much simpler, for now a great many terms in the
energy are common to the calculation fuor both atom and ion, so that they automatically cancel.
In fact, when we carry through the whole calculaticn, anu subtract, the difference remaining
is exactly the one-eiectron energy ¢ g all other tc::u8 canceliing. This is Koopmais’ theorem,
and we see that it shows the identity of the one-electron energy, snd the icnizaticon cicrgy, up
to terms of the second order of small quantities. We shall now show how this result comes
about, from detailed calcuiation. '

Tae caiculation of the energy of the atom is carried through 2xactly as in the preceding
section, in terms of Eqs. (1.1) and (1. 5). For the fon, we merely oiuit the terms involving
the wave function u, ;:rovided we are interestecd in the lonization en>rgyv of the 1"‘ electron.
The difiarence, or the tonization energy, then consists of just the terms inveclving the function
u,- The en2rgy of the at-m minus the energy of the ion, which is the negative of the energy
required to ionize the atom, is then

S w2

& 2(1) [ul‘(xl) uj‘(xz)(z.'lrlz) u‘(x‘.\ "J(!z) dVldVZ

- 2Z/r1) u‘(xl) dv,

~ 3.(% spin j = spin {) fu{‘(xl) uj'(xz)(z/ru) uj(xl) ut(xz) dv,dv,
We now substitute Eq. (1. 16), which is satisfied by “t(xl)' and we find at once that the resuit
equals ¢, u1‘(xl) ut(xl) dv, = ¢, onaccount of the norinalization of the u,'s. Thus we

prove Koopirana' theorem.
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3:_ Extension of the Hartree-Fock Methd

in the proceding sectiong, we have set up the Hurtrez-IFock equation, and have proved
some properties of its solutions. We remember that this method is ine appropriate one for
finding the best one-electron orbitals fcr sctting up a single deteruiinantal wave funciion. it
has several drawbacks, however. I the first place, it iz rather hard to apply ike metuod, in
practice. It involves the calculation of a good many exchange integrais, and the orbital for
each quantum number is a solution of a different Schrddinger one-electron problem. Secondly,
in iany cases we really wish to use a combinaiion of a numbper of determinants, and in such
a case the method is not directly applicable. No straightforward way appears for really get-
ting around these difficulties; but in the present section we indicate scme general lines of ap-
proach for extending the Hartree-Fock method {0 cases of the interaction of many determiunants.

One approach is fairly direct. Suppose we heve a problem of atomic multiplets, for
which a number of determinants must be used. If this problem is not very complicated, we can
solve for the energies of the varisus multiplet levels, in terma of certain exchange integrais
(such as the F and G integrzi= encountered in the treatment of complex spectra given by the
present writer). The energy of the ground state of ihe atom, then, can be expressed in terms
of such integrals, which in turn depend on the one-electron orbitals. We thon vary any one of
the ut's. in thls expression for the energy of one of ks states, and arrive at a differential
equation, similar to the Hartree-Fock equation but containing additional torms, for this func-
tion u;. These :quations differ from the ‘rue Hartree-Fock equations cnly in that different ex-
pressions appes:* for the exchange charge deusity. Thc cjuations are not apareciably more
difticult tc soive vy direct numorical methods than the Hartree-Fock equations, and the re-
sults should be very good. This method was used by Hartree and Hartreesse) in a study of the
excited atates of the beryllium atom; thay set up separ-ate equations for the orbitals in the
singlet and triplet state, cnd calculated separately the energy in these two states, getting much
better agreement with experinient than by the usze of the conventinnal Hartree-Fock method.
The sarie method was also suggested simultaneously by Shortley. (51) It has not been widely
used, and would be very difficult tv apply if there were several muitiplets of the same type,
s0 that the secular ecustion of complex spsctrum theory had to be solved numerically. For
simple cases where a1 analytical solution {r poasible, however. it seems 2 desirable pro-
cedure.  There is, however, a drawtack: the orbitals for each staic of the systemn are differ-
ent, and in particular are not orthogonal to each other. The energy of each tstate must be com-
puted for the whole system, ruiher than getting {onization energlec directly 55 use of Koop-
mans' theorem. For a light atom like beryllium, to which Hartree npplied e metiod, ihe.
total energy of the alom is not very big, and it {8 not difficult to compute this energy fos cach
siate, and subtract to get the multiplet 2«:raration. For a hcavy atom, nowever, we ghouvld

50p. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A154, 588 (1936).
51G. H. Shoriley, Phy~. Rev. 5u, 1272 (1136).

-39-




e e 1 P e

THFE. DETERMINANTAL METHOD FOR ATOMX3

be subtracting one large quantity from ancther lurge gquantity, and the ineviizble errors would
bte serious.

A quite different zpprogsch to the problem would be, not to (ry to get the best orbitals
to rep:ascnt the energy ol the siat2 by means Jf simple complex specirum theory, bhut rather
to set u» many determinarts, and find linear combinations of them, relying on the large num-
ber of determinants for the accuracy of the answear, rather than on the correctness of a few
determinants. In other words, we should make exiensive corrections for configuration inter-
action; we should include determinants describing excited configurations of various types.
There {s much experimental evidence iz speciroscopy for the imporiance of such interactions
between configurations. Thus when there are large experimental devistions (rom the simple
rules of muitiplet separation suggested by the eiemertz-y thiecry of complex spéecira, it often
seems that these deviations may arise from the repulsion of states from different configura-
tions which have proper symmetry and multiplicity properties so that they can have a non-
disgonal matrix compozuent of energy betiveen theni. An approach of this type has not been
carried through in detail, but with our present improved ability to solve large secular equa-
tions, {: should not be too difficult to carry out. ! one wishes to do it, then the essential thing
is ic have a considerable number of determinantal functions representing different configura-
‘{nns, and orthogonal to each other. This demands orthogonal one-electron functions, corre-
spondisg =t only to the ground state of the atom, but to a number of excited states, so that
we ca. form determinants frem s numbaer of configurations formed from them. We may hope
that {¢ cur orbitals and configurations are chosen proper!y, the most important determinants,
for determination of the ow-lying energy levels, will be those with only a few outer electrons
excited. These would correspond to configurations with diagona! erergies only slightly above
the lowest state. And it is well known from elementary perturbation theory that states with
diagonal cnergy close to each othér have more perturbing effect on each other, othsr things
being equal, than if they were further apart in energy.

We have already pointed out that the Hartree-F.ck method, thougk it results in orthogo-
nal orbitals, givss us only a small and definite numb.er of those. corresponding to the orbitals
occupied by electrons in the single determinuntal state of the atom from which the Hartree-
rFeza equations areé darived. We need more orbitals, corresponding to more highly excited
statez, for the determinantal methicd which we have sketched above, and the Hartree-Fock
method does not tell us how to get themm. We may use our intuition, however, to suggest an
extension of the Hartree-Fock method which could give us as many orbitals as we denrired. If
the Hartree-Fock aquations were only of the simbple form of Schrodinger equations for one ei-
actron, then we could solve this Schrddinger eauation for as menr excited ztates as we desired,
and these orbitais wouil all be orthogonal, by the fundamental orthogonaiily theorem of Schro-
dinger's equation. It seems very plausible, then, to try to renlsre the Hartree-Fock ¢quations
by arxr ordinary Schrddinger equation, expressing the motion of the electron in a zingle poutern-
tial fiold reprosenting someaebow i «{Tact of the nuclel and the uiker elecirvas.

-40-
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8. EXTENSION OF THE HARTREE -¥OCK METHOD

There 1: 2 ctraightforward way in which this can ke cone, though {t does not seem to
have been mentioned in the litersture. Suppose we have an antizymmetric function U(x:s: o o
!nsn), representing the motion of aii n electroni. This {s suppozcd to be a funclion which we
arrive a\ in the process of solving a self-consisirnt probiem. It may be a single determinant
formed from one-eleciron oibitals, or n sum of a finite v umher of guch detsrminants; or it
may be any approximation to the reps. wave function of the system, in some particular station-
sry state, either the ground state or some excited stste. Then we may ask the question, if
an electron is found at position x, with spin s, and if all electrons move according ¢c the wave
function U, what {s the average density of all other electrons, as a functinn of position, and
nen-e what is the average potential exerted L'y these other clecirons on the one in question,
averaged over the position of the otier electrons? We know that the probabtltty that eiectron
one b at position x) with spin 5. and that aimultaneously electron two be at position X, with
spinn, is (s, . . s)) Jus(x;s, . . x 8 )U(x,s, .. x5 )dx;. . dx,. Tueprobabliity that
electron one be at position x 1 with spin 8 irrespective of what the others are doing, is
5:,(0z 5 G on) U‘(xl'l G xnsn) U(xll1 e xnsn) dx, . . dxn,’ Thus the probability that elec-
tron two be at position x, with spin 8, provided we know that electron one is at position x,
with spin 8 is the ratio of these two, or

2(53 - 'n)fu.(!l'l - xn'n) U{x,s, . . x_s )dxy. . dx
2(sy . . 'n)TU.(xl'! <oz 8 jUE3 .. x 8 )dx, . L 22

On account of the antisyinmetry, we should have got the same sort of distribution for any one
of the electrons 3 . . o as for the second slectron. The total charge distribution of electrons
2. . n when the electron one is at x, with spin s, is then given by (n - 1) times the expras-
sion above. This {8 a function of the coordinate x, and spin s, of the macond slsctron, so that
it takes account of the possibility that thers sacy be different charge densities for electrons of
the two spins; and since {t depands on o 2 these densgities depend on which spin the electwron
one may have, so that we have the mechaniz= Ly which the spins of different electrons act on
each other. =

It is intcresting to s2e what this charge distribition becomcs for the special case where
the wave fu:cticn U (= 2 single ceterminant of orbitals. In that case, teking z2d>antage of the
orthogonality of the orbitals, we can eusily carry .ot the intagretinng in (1.12), and we find
that the charge density, (n - 1) times the expression (1. 18), is
2(1)2(3) ul.(‘i'l) uj(xlsl) uj‘(‘zsz) ut(’z'z)

(k) u, *(x,8,) u(x,s,)

. (i.18)

(1.19)

S(3) vyo(xy8,) ujlx;s,) -

The first term of {1. 19) {s just the total charge density of cl] electrons (since the index j gues
{rom 1 to n). The second term is a correction or exchange charge, to be subtracted from this,
éo that the net charge wil correspund to n - 1 railer than n electrons. This exchange charge
denaity in (1. 19) {s simi’ar +o that in Ec. {1.17), which we deriv. ! rom the Hartsce-Fock
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THZ DETERMINANTAL METHOD FOR ATOMS

equation. To get the exchange charge in {!.19) from that {n (1.17), we multiply by a factor

I
“i“‘l'i) u‘(x‘s,) 1. 30)

k) uk""lsl) uk{xlsl)

any sum over i. The meaning of this is clear. In the Hariree-Fock method we find a different
cxchange charge density for an electron with coordinates x, and spin 8, depending on whicis
wave function w, it is in. These exchange charge densities, as we showed in Section 7, have
certain universal features; :1o matter which wave function the eiectron is in, the exchange
charze density stlii inlegrutes to one electronic charge, and still approaches the same limnit
when X5, 85 approacn X, By The exchange charge density {1.19), however, is the weighted
mean of the densiuies (1. 17) for he various states, using the weighting factor (1. 20), which
obviousiy measures the probability that, if electrbn 1 is found at pcsition x; with spins,, f{t
would be {n the 1*® orbital.

It is the use of different exchange charge densities for the Schréddinger equations for
the different orbitals which complicates the Hartree-Fock metrod. 1he present writer(s 2) has
recently suggested thet it could be simplified, without any sericus errors being introduced, by
uzing the weighted exchange charge density appearing in Eq. (}.19), in place of the separate

exchange charge densities (1.17) appearing in the Hartree-Fock scheme. We now sce, how-
ever, that the natural generalization of this scheme to the more gencral case where the wave
function is a sum of determinanta, rather than g single determrinant, is to use iuc expression
(1.18), multiplied by (n - 1), for the charge density of othar éieciruns, to be used in comput-
ing the potential function for the seif-consistent field.

Let us, following this discussion. write the Schrddlinger equation for the uis-ciectron
orbital Uy moving {n the field of the puclei, and of ths charge densities of other electrons, as
derived from the expression (1. 18). To find the notential, at point x 1 of the charge density
of other electrons, we multiply the expression (1. 18) by 2/r 12° and integrate over the coordi-
nates and spin of electron 2; and multiply by (i - 1). We may equally well multiply by the gumn
of terms Z/rlj. summed over all J.'. except 1. Each of the ?./ru termsa wil! give the sanie in-
tegTal, on accouni of the symmetrv properties of . And the {inal answer, exprcssed in this
way, is more symmetrical. If V(xl) is the pntential ensrzy oI the electron ! in the field of the
nucleus or nuclei, then our Schrodinger equation is

1 2
‘- '71 + V(;l)) 2,{x,5,)

o~

g Linz - - 8) JUsxys, . Loxp s NE e, 2 e VR s L xS ) dx dx Y
u,(x,s,)

17171

(1.21)

z:(az 5 1 zsn)fU‘(x!sl e xnsn) Ulx;s, . . xnsn) dx, . . dx

~32~
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9. FREE.-ELECTRON GAS APPROXIMATION TO THE ENCHaNGE ClUANGCT

We regard T3 (1.21) as u very gereral formulation of the self-consistent field method. The
potential energy function is a unique functicn, a function only of the pcuivivn and spin of the
eiectron | Thus all one-eieciron functicas determined from Ui are autematically orthagonal
to 2ach other {ihouih {t iz by no means true that the orbiial parts of the functicis cgseciated
with 4 spin sre orthiogonal ic the orbital parts of ithose associated with - spin: the orthogo-
nality in ihat case comes from the spin part of the functions). We can determine an infinite
set of orthogonal orblials by getting all sclutions of (1.2!). We then set up, by whatever
method ceems best to us, an spproximate antisymmetric wave function for the ‘shoie system.
We may well do this by setting up a finite number of determinantal funcilons, using the orbituls,
foliowing the methods outlined in the present chapter, and getting the best linear combinations
of these determinants. We take that linear combination representing the state we are inter-
ested in (for instance, the ground state), and regard that as the function U, which enters in
Ea. (1.21). We then make, as our requirement of self-consistency, the condition that the U
computed in this way from the orbitals u skould lead to a wave equxution (1. 21) which in turn
iws the same set 0i u“s a3 {ts solutions.

We have determined the equation (1. 21) by int:itive arguments, escentielly as Hartree
did with his first ~tatement of the method of the self-consistert fi=]d, rather than by uzing ar-
guments based on the variation principle, -1 with the Hartree-Fock equaiion. It is clear why
this must be so. We h:.ve aiready shown that if we use enough determinanial functions, we
can get a correct description of the final wave function, no mat:sr what urbitals we use. We
may well ask, then, what {s the need of setting up our <rbitsls uy by a self-consistent method
itke that of Eq. (1.21)? Why not just use any arbitrary orbitals? The answer apparently must
he given intuitively, rather than by precise logic based on the variation principle, but it is
this. If we use solutions of the self-consistent field, then we shall expect that those determi-
nants formed from orbitals with the lowest one-electron energies ¢, filling up the lowest
states in the usual way, will have the lowest diagonal energies, and will come in in the most
important way in the final linear combination of determinants. In other words, by use of these
orbitals, we should be able to get a good approximation to the correct wave function with rela-
tively few determinants, and we should be able to pick out these determinants by inspection,
as those with the electrons in the lowest siates, or with viuy a few sxcited electrons. On the
contrary, with :.:i'- which depart widely from self-consistency, we should expect that far more
determinants wouid be required to get a satisfactory approximatton.

9. Free-Electron Gas Auproximation to the Exchange Charge

Though w> have heen able, in Eq. (!, 21), to sct up a formulation of the self-consisteni
method general enough to give us one-electron orbizals ug under ail ciicumstances, <%l it can
sometimes be very complicated to apply in actual calculations. A simplified versior of the

eguation has buen set up by the present anthor, (53) which pres.'rves ¢he main features of the

...............

53j. C. Slater, Phys. Rev. 81, 385 {1951).

()

T T



THE DETERMINANTAL METHGD FOR ATOMS

corTest method, bt {2 a good deul eucier to use and under atand. Ve must remember thai the
electronic charge denaity represented by (1. 18), multiplied by (n - 1), reoresents tne charge
o nll siectrone, dimintzhed by the exchange charge density; we may, {n fact. use this as a
definiiion of the exchang- charge density. This exchange charge density ha:s a total amount of
one ciectronic charge; this follows at once from the fact that the integ: 2! of the expression
(1.18) over all values of x ¢+ 3nd summation over s, is unity, =o tnat thic tota! charge deusity
represented by (n - 1) ttmeu (1.18) is (n - 1) electronic charges. Furthermore, the expres-
sion (i. 18) is zero when X, = X, and s, = 8, oncccount of the antisymmetry ot U. That is,
the charge density of othei electrons of the same spin as the first approaches zero as we ap-
prcach the position of electron one. We may say, then, that ihe density of exchange charge af
the same spin as the {irst electron approaches the total density of charge of that spin, as we
approach the position of the first electron.

We may, then, very crudely, replace the exchange charge density of the same spin as
the electron one by a spherical charge distribution, whose density at its center equals that of
all the electrons of spin s, at the point x, , and of volume great enough to include one electronic
charge. The volume, It otiier words, muat be inversely proportional to the density of elec-
trons, or the radius cf the sghere must be 1nversely proporticnal to the 1/3 power of the den-
sity. Ths potential energy of en electren at the certer cf such a sphere will be ILnversely pro-
portiuvi:e! to the radius of the sphere. Thus the potential energy will be directly proportional
o the 1/3 power of the density. Iu oiher words. we approximateiy say that the potentiai en-
ergy to be used in the Schridinger equaticn i{c the potcntial energy in the field of the nuclei, and
of all the electrous, including the oie whose wave function we sre finding, diminished by a cor-
rection proportional tc the 1/3 power of the density of electrons of thc same spin as that con-
sidered. This replacemant of all the exchange corrections by a term simply depending on the
local charge density is obviously a great simplification, thc (gh of course it is not very accu-
rate. We sluall find latar, when we diacuss magnetiam, that it gives useful qualitative insight
intc the magnetic problem, {n that >~ :tentials to be used for electrons of the two spins are
not the same in a muznet{c prob’em. If there is a preponderenc: of elactrons of + apin, say,
at ¢ particular point, then the decrease of potential energy cf a + electron, at this point, on
account of \he exchange correction, will be greater than for an electron of - apin, 30 that the
potential energy of the clectron of + apin will be lower. This diatinction between ti.e pctential
functions for alecirons cf the two spins, with consequent difference in the one-electron orbitals,
should strictly be taken into account in self-consaistent field work with atoms, but it has hardly
ever been consiZered in actual calculations, up to the present.

When {t comes to making this approximation methcd quantitative, v.2 can take advantage
of the fres electron gas, f{for «which the calculations can be made exacily. Blocn, (54) in the
aarly days of quantum mechanics, discussed the magnetic properties of a free-electron gas.

---------------

*4F. Bloch, Z. Phsik 57, 545 (1929).
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9. FREE-ELECTRON GAS APPROXIMATION TO THE EXCHANGE CHARCE

He set up a sing'e determinantal wave function for such a gas, using plane waves as the ui's,
filling up these waves for cnough to accsmoadate nld clectrans, Then he essentially calculated
the ~harge denaity ~f niher eiectrons in the neighbnrhund of o aiven wiecirey, essentiaily by
use of (1.18). From this he found the exchange charge density exactly. for this cass, and in-
tegrated to find the rorresponding correction term in the poteutial energy. We do not wisn io
iuk€ up this correction at this point, since it is concerned more with the problem of a solid
than of an atom. When we work it out, however, we find that the Schr3dinger equation for a
function “t(xl' +), where this symbolizes an equatior. for a function corresponding to + spin,

can be written
(- Vlz + V(xl)) ux,. ¢)«+ [(p{r(xz) + p_(xz)) (Z/rlz) dx, ut(xl. +)

1/3 (1.22)

3
- 6(1.; p*) ui(iil. 4) = (tut(xl. +) »

with a similar equstion for “t(xl' -). Here p+(xl) and p_(xl) represent the charge densities
of charge of + and - respectively, at the point x,, in atomic units, so that the term in ¢, +

1/3 is the ei-

p _ represents the poteatial of all electrons, at iiie point X,- The term in (p ¢)
change correction, of which we have been speaking. The exchange courrcciivii in Eq. (1. 22) is,
as we have stated, taken from the case of the free electron gas, and we are assuming that
there i8 no great error if we replace the correct exchange interaction by this free electron
value, computed for ths same charge density which we actually have present. This of cours~
is a crude assumption, but still, as we have stated, it is not qualitatively absurd. Calcula-
‘inns for the self-consistent fields of atoms, using Eq. (l.22), have been made by Pratt, (55)
and he finds them {n fairly good agreement with the more accurate Hartree-Fock methoa.

We have now come to the end of our sketch of the methods to be used in computing the
erergy levels of atoms; though no calculations have really been made following this complete
scheme. It involves finding a set of orthogonal atomic orbitals u;, as solutions of a Schrg-
dinger equation, which should properly be Eq. (1.21), but which can be replaced by the cruder
aporoximation (1. IZ)J.“ Having found these orbitals, we set up a number cf determinantal wave
funntiuns, corresponding to the lower configurations of the atom. We solve the secuiur equa-
ticn between these determinantal functions, so as to diagonalize the energy. taking full advan-
tage of the nroperties of spin and orbital wngular momentum.. When we have done this, we ob-
tain & wave function for eacn of the states derived from the secular equation, Since we are
usually more interested in the ground state than of any other, we then take this wave funciion
fcr the ground state, insert {t, ss U, into (1. 21}, and find ;. new Schordinger equation, repeat-
ing the process unt{l we l ave self culsistency. Cr, {f we are using (1.22), we compute the
charge densitics of electrons of + and - spin from the wave function, and seek self-consistency.
It is clear that this process will be more accurate, the more determinants we take; and this

el . T e . ) -

55G. w. Trat!, Quarterly Progress Report of ibe Solid-3iuie and Moieruiar I'licury Sroup,
M. X, T |, July 15, 1852,
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number, i thz last analysis, will be fixed by the persistence of the computer, and the capabili-

tles of his comaputing machines.
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CHAPTER 2
THE HYDROGEN MOLECULE

The simplest guantum-mechanical problem with more than one atom is the hydrogen
molecule-ion, HZ“, the problem: of & single electron moving {n the field of two hydrogen nu-
clai. This prohlem af o aingle particic in the field of two centc:z Lllracting accerding to the
inverse square law can te exactly solved, both in classical and quantum mecharics. One {n-
troduces ellipsoidal coordinates, with the two centers as foci, and finds that variables can be
separated, so that in quantum mechanics the problem is reduced to that of solving ordinary
differential equations. The eolution, by Burrau, ) has been of a good deal of qualitative value
in understanding the nature of the problem of diatomic molecules. Unfortunately, however,
the separability does not hald fo; any two-center probiem except that involving inverse square
forces, so that it cannot be 'npplied tc any diatomtc molecule, in particular not to the hydrogen
molecule. We must proceed by quite different inethods, and Heitler an? London, @) whose
work we have already quoted, made the first major effort to understand the structure of this
simplest diatomic molecule.

This Heitler-London solution of the hydrogen inolecule has been used 80 much, as a
model for the solutions of more complicated molrcules, that it will repay our very careful
study. One feature of ii, which we shall discover at the outset, makes its direct extension
to more complicaied probieins impracticable: it deals with non-orthogonal orbitals, and we
have seen in the preceding chapter how important {t is to have orthogonal orbitals. A great
deal of the literature of xolecular theory is marred. as we shall pcint out in later chaptere,
by unwarranted neglect of the terms arising on account of this lack of orthogonality. Never-
theiess we can recast the argument ~f Heitler and London ir. a form using orthagonal orbitals,
and this we shall do, gaining in this way a starting point which can be extended to more com-
plicated cas. s, When we 4o this, we {ind that an alternative point of view, the so-caiied
method o/ moleculer orbitals, is also included in our more general formulation. The present
chapter taes up all these different approaches to the hydrogea molecule, and discusses their
ipterrelationships, in such a jorm that they really can cerve as msodels for our future work in
more complex molecules and in solids. We shall find n.ost of the problems encountcred in
the later chapiers foreshadowed by features of inis simplest of molecules.

1. The Heitizr-London Method

As a first step, we rzmind the resdcr of the Heitler-London metnod itseli. Heitler
and London, 'wve remember, wrote their famoua paper in 1927, just after Heisenberg's 1926

‘@. Burrau, Kgi. Danske Vid. Selsi:sb Skrifter, Mat-Fys. Med. 7, 14 (1927).

2W. Heitier w.id F. London, Z. Physik 44, 455 (1927); se= also Y. Sugiura, Z. Physik 45,
484 (1927), for compleiton: of some matbarmai.cal puints J 1t unfivished in Heiuer and Lzn -
d:ca's paper.
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THE HYDROGEN MOLECULE

paper dealing with resonence phenomena in many-body problems, which we have ¢’scussed in
the precedinyg chapter. Thus they were writing before the formuiation of the determinantal

method or e Pauli spin matrices, and they worked entirely wiin functions of the coordinates,

ag HefaehLerg had done in his treatruent of the helium atcm. ‘They argued in the following woy.

Let a represent a hydrogen ls wave function about atom a, wnd b a hydrogea ls wave func-
tion about atom b. Let the coordincte; of the two electrons be denoted by %, and Xy- We know
that, at least when the atoms are widely separated, the ground state will correspond to the
situation where one electron is on one arom, the other on the other. Thus it could be repre-
sented by the wave function a(xl)b(xz). It could equally well he represented, however, by the
other function b(’.l)a(xz): these two functions will be degenerate with each other, at infinite
internuclear distance. When now we try to solve a perturbation problem between these two
functions, we find at once that the suitable linear combinations are the sum and diiference,
a(xl)b(xz) ¥ .)(xl)a(xz). which are respectively symmetric and .antlsymmeirlc {i the coordi-
nates of the electrons. We can find the diagonal matrix components of energy for thesc two
states, and find that the symmetric function has an energy minimum corresponding approxi-
mately to that known to exist in the ground state of the hydrogen molecule, while the antisym-
metric function indicates repulaion between the atoms. By arguments similar to those used
by Beisenberg in discussing the helium atom, in the papers cited earlier, Heitler und i.ondon
identified the symmetric function with the singlet state, the antisymmetric one with the triplet
atate.

After the development of the determinantal method, the present writeru) showed how
this same arg:ment could be stated in terms of orbitals involving spin as well as coordinstes.

‘Thus we may make a tabls, Table I, showing how the spins of the two electrons can be dis-

Table 1
State Spinof o Spir of b Total Spin
I + + 1
11 + - 0
i - + 0
v - - -1

tributed among the two orbituls a and b. We can set up four determinants, associated vith
four assignments I -- IV of Table I. Thus the determinant corresponding ic statc ! ie

3(x1)°(5‘) a(xz)“(sz)'
blx )als;)  blzp)als,)|

where a represents the Paull epin function, whilh i vae when 8 corresponds to a + spin,
2<T'0 when s, corresponds 'o0 a - 3pin. That ia, thi, determinant can be written {a(xl)b(xz) -

31 c. Siaver, Phys RNev. i 1107 (1931).
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l. THE EEITLER -1LLONDON METHOD

b(xl)a(xz)} 0(81)"(92). It is zero, in other words, unless toth electrons have + spin, and {t

corresponds to an antisymmetric function of coordinates. Simila.ly the function IV is zero

unless both electrons have - spin, and {t has the same antisymmetric dependence cn coerdi-
nates which we have just found.
The deierminant curirespondiug tv siate I is

a(xl)a(sl) a(xz)dsz)

b(xl)ﬂ(sl) b\"z)a(sz)

and that correspondiiig to III {s

ﬂ(xl)ﬂ(sl) a(xz)“sz)

’

b(xl)ﬁ(sl) b(xz)dsz)

where B is the other spin fuiiction, zero when the spin {s +, cne when it is -. If we set up

the matrix compcnents of anergy between states I -- 1V, we readily find that there are no com-
ponents between states I or IV and any other states, as we expect from the fact that MS for
these states (designated total spin in Table I) is different from the values for states II and il.
We cannot uncritically use the formulas of Chapter 1 for components of energy, for the orbitals b
a and b are not orthogonai to each other; but the problem {s simple enough so that we can
handle the situation in spite of the lack of orthogonality. and check our statements. We find,
however, that there are non-diagonal components of energy between states il and 1ii, which
are obviously aegenerate with each other, so that as usual ve find that the correct iinear com-
binations are the sum and difference of II and [II. As we see by expas.:inz the determinants,

A &bt o it i

this sum and difference equal 1
{atxbx,) ¥ bixpatx,)} {ats))8is,i t Bieyisisy)

where the upper signs are for the sum, the lower signs for the differeance. We se2, in other
words, that the sum give3s the same antisymmetric function of coordinates which we observed
for states I and IV,.-and a symmetric function of spins, while the difierence glves a symmetric
functior cf cocrdinates, an antisymmetric function of spins.

It ia then clear that the antisymmetric function of coordinates appears three ilmes, for
states of Ms = 1, 0, -1, and hence this must correspond to the iriplet sta‘e. wnile thc avm.
m&iric function of coordinates appeacs just once, with M; = 0, and henc:c must rorrespond

to the singlet. Thus we ver.{y ine conclusiuus ¢ Lie'tier and Lomiur regarding theae functions.

- o o o — —— o

We can make these conclusions surer, if we vish, by computing the mutrix components of the
square of the ™ guiiua2 of the spin, S’t
Chapter 1. Then we {ind unembiguously that our assignment of spins is correct; though here

again, as with the mairix of energy, ‘2 must examine our steps with carg, on uccount of the

“ 4+ SyZ + Szz. between these states, as we did in

lack of orthogonaliiy of the orbitals a and b.

-49-

e — A . el .. ST .- s s T — e



THE HYDPROGEN MOLECULE

The net result, then, is that the orbital part of the wave functiuns associated with sin-
giet and tripiet respectivcly arc a(xl)'u(xz) b b(x,)a{x,}. where the + sign goes with the sir-
giei, ‘e - sign with the triplet. These functions are rot normalized, but 'wc shall normalize
them {n a moment. Then the diagonal matrix component of ene!'gy with reepect to these fun.-
tions must represent the energy of the two s*ates. Let us compute this energy. First we
nermalize. Wwe assuia2 & and b iv be seperately normalized; but the overlap integral

a= [alxoix;dx, .

where we disregard the complex conjugate nature of the wave function a, sfiicc it is real, will
not be zero. Thua we finu that

S{atxptg) t bixpatep)} © axy = 201 ¢ 8%

s0 that the normalized wave functicns are
1 { :
Y i a(x )b(x ) b 4 b\x )a(x )} .
We must now find the diagcnal matrix component of the energy operato~ with respeci ic these
two functions.

The cnergy operator is

2 2z z 2 2 2 2
0TI AU SRS T S e S
! 2 r. Taa Ty Ty T Typ

where Tla is the distance between the first electron and the nucleus a, etc., rpls the dis-
tance between the electrons, =nd Tob’ which we shai: denote by R, the distance between nu-
clei. We remermber that the functions a and b are hydrogen 1s wave functions about the re-
spective nuclei, Thus we have

where the coefficient. .- 1 multipiying a(x}) on the right sidec of the equatiun arises becauce the
angray of the hyurogen grournd state is - 1 atomic units. When we use this rclation, we find
that the energies of the two states are given bv

E,:-z«rﬂ"’fri‘- (2.1)
t 1% a
where
H, = raz(x b (xz)(% - % - Fi—a + -%)dxldxz.
H, =Jfa(xl)b(:l) e(tz)h(xz)(-% : .rf_b g i.; + -'%) dx,dx,, .

o
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1. THE HEITLER-L.CNDOW METHOD

We may rewrilc thess expressions se

2
2 2a .
Hy =z + 2]+ 0 H =20 + 2Ka+ K', (2.2)
where

J = -faz(xl)(Z/rlb) dx,
Jt = faz(x )bz(x )2/r,,) dx, dx

B 1 rZa i ¥ 3 1772

(2. 3)

K = -fa(xl)b(xl)(z/rlb) dx,

K'= [ alx, oixy) nixy)blxy)2/r) ;) dx dx, .

We have here chosen our notation, as far as the expressions J, J', K, K! are ccncerned, to
agree with that of Pauling and Wilson, Introduction ¢o Quantvm Mechanics, McGraw-Hill, a
convenient reference to use in looking up furthcr details.

It was now shown in the papers of Heitler and f.ondon and of Sugiura, quoted abovs, how
to compute the varivus integruls concerned. Their values are gs follows:

a =e R0+ R+ RYS

J

-2/R + ¢ %Rz + 2/R)

K = -eR@2+ 2R) (2.4)

J* = 2/R - e R2/R + 11/4 + 3R/2 + R%/3)

- 2 [- o-2R(_25/8 + 23R/4 + 3R% + RY/3)

+ 5180+ tnRr)+ a7 EI(- 4R) - 284 B~ 2R)}],

where =

s = R - R + RY/3),

where y is Euler's constant 0. 57722, and where Ei(x) is the integral logarithm {tabulated, for
instance, in Jahnke-Emde's tables). In Table Il ve give values of these quantities, computed
for a number of values of internu:lear dictance (in atomic units). The iable includes also an-
other quantity L, which we shall need later. From the quantities given in Table Il we compute
values nf H,. Hi, ad Zt' Thicze are given in Table LI.
From Table III, we see that the singlet stete, whese energy is £, has a minimum of

energy at about 1.5 atomic units, corresponding io a steble ground state of the molecu:s, while
E _, the triplat state, is repu'sive. The well known energy curves, plotted from these values,

are snGwn it Wiz, 1 In theae to0les .nd ciurves ve have *he predictions of *he straightrorward
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THE HYDROGEN MOLECULE I

]
Heitier-London theory. !

Table II
R A J K e K!' L
9.8 0. 9603 - 1.7927 - 1.8196 1.2103 1. 1353 1.1816
1.0 2.8584 - 1.4587 - 1.4715 1.1090 0.8733 1.0141
1.5 0.7252 -1,1674 - 1.1157 0. 9807 0. 5937 0.8107
2.0 0. 5865 - 0.945] - 0.8120 0.8519 0.3683 0.6162
2.5 0.4583 - 0.7811 - 0,.5746 0.7368 9.2132 0.4512
3.0 0. 3485 - 0.6601 - 0.3983 0.6396 0.117C 0.3215
4.0 0.1893 - 0.4992 - 0.1832 0. 4951 0.0312 0.1540
Table III
R Ho Hl E’ E_
0.5 1. 6249 1.3298 - 0.4629 1.7979
1.0 2.1916 0.1794 - 1.9930 - 0.5904
1.5 - 0.0208 n 3233 - 2.2255 -1.3619
2.0 - 0.0323 0.2403 - 2.2073 - 1.6921
2.5 - 0.0254 0. 1455 -2.1412 - 1.8480
3.0 - 0.0139 0.0726 - 2.0834 - 1.9252
4.0 - 0.0033 0.0203 - 2.0228 - 1,9824
or
! + \\}
_ \ . e
\__——”,——‘-—__—
T 1 L 1 |
v i t 3 .

Energy of hydrogen molecule as !unctloln of internuclear
distance, Heitler-London theory. E_, Zg ground state.

NTOBAGLIAR ONTMIOE (ATOMC UNTS)

) X K JX“ state.

Fig. 1
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2. MOLECULAR ORBITALS FOR THE HYDROGE!N PRCILEM

2. Molecular Orbitals for the Hydrogen Problem
Wc have already mentioned the comnlications associated with the use of non-orthogonal
orbitals, as in the Heitler-London method. These complications are not secious in a two-

electron problem, but ihey rapidly become envrmcus &8 we go to prublems of more and more
elactron«. Hencg the Heitler-London method in its elementary torm is not suited for generga-
lization to more complicated molecules. We shall now show, however, that we can set up or-
thogonal orbitals, linear combinations of the two orbitals a and b used in the Hefitler-ilondza
method, and that whea w2 express the problem of the structure of the molecule in terms of
these orbitals, :i takes a fnrin suitable for generalization.
As a guide in setting up these orthogonal orbitals, let us give a little attention to the
method of the self -consistent field, as applied to mole~ules. In Section & Chapter 1, we set
up a general self-consistent method which can oe applied to molecules as well as atoms. We
set up, in Eq. (1.21), a differential equation for the one-electron furctions u,. Tuese repre-
scited the motion of an electron in a certain averaged field of tbe nuclei and the other electrcn.
We cannot hope to solve this differenticl equetion exactly {Sr a molecule; but at least we can
hope to set up linear combinations of our atomic orbitals = and b which approximate zs well
as possible to solutions of this self-~onsistent field problem. Now in the hydrogen molecule
problem, we z'wuld find the potenttal to be syremets‘c in the two nuclei; we shzll later examine
this problem of the meaning of Eq. (1.21) for this problem. And it is well known that in a two-
certer problem with symmetry (n the nucle!, all solutions of Schrodinger's equation must be
either lmetrlc or antisymmetric wnen the nuclei are interchanged. Ti.at is, the functions
u, must be either even or odd with respect to reflection in the piane midway beiween the two
nuclei, with respect to which the nuclei are in the positions of mirror images. But there is
only one way in which we can set up combinations of a and b having this property: the only
even function is a + b, the only odd fuaction, a - b. These functions are automatically or-
ibogoncl tc each other, since their product is odd with respect to reflection in the midplaae,
and contributions to the sverlap intagral on one side of the midplane cancel contributions from
the other side. Let up then set up these two orbitals, We may call thein molecular orti:als,
aince thie name hae heean =2nnlied ¢o eolutiong ¢ the self-consistznt field problem for molecules,
and our functicnz ers auprosiimatiaons to those colutfons.
We sha!l cgll the even function u_, the odd function u, (it is often convenient to use the

symbols g and u, abbreviations ol the Germsn words gerade and ungerade, to denote even and
odd functions). We readily find thai the normal!ized functions are

u_(x) = _(...L_L).“ ») ¢ blx . uu(x) = 1‘15)._. E‘,.E! S
L JE1 + 4 ./ZU - a)
We can now set up a tuble, similar to Table ], giving the possible arrangewsents of the two
electrons in these two orbitais. This ‘abls, Tabl!e IV, {s given below,
In Table IV, we hive tncluded six atates. ratuer than the four given in sable [, Let us
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D P« @ i Sl s PSS G i B

ot

1 e anede S idkiatitiindd A0 SACRER B GARea el s M. “watng b A




THE HYDROGEN MOLECULE

Table IV
State Spin of u‘ Sein ! “u Tctal Snin
1 + - 0
11 + - (4]
111 + + 1
fa'4 i = 0
v - + 0
Vi - - -1

see why this is. If we find a one-electron energy for the orbitals u8 and u, we find that u
lies lower than u, it is a general proparty of the symmetric and antisymmetric solutions of
two center problems that the symmetric solution has a lower energy than the corresponding
antisymnmetric one. Thusinthe language of the self-consistent field method, thelowest state of
the molecule might well be assumed to come from the conriguration where Loth electrons are
in this lowest stationary state u_. The electrons wouid have to have opposite spins, and to
form a singlet state. It is this state which is represented by I, in Table IV. W¢c should ex-
pect the next nigher states to come when oie electron {s left in the u_ state, but one excited
to the 4, state. In this case, since the electrons =2re not equivalent, we have a singlet and a
triplet. These s’‘ates com< from the states LIl -- VI of Table IV: the states III, VI, and the
sum of IV and V, represent the three components of the triplet, and the difference of IV and V
is the singlet, jur: as in our discussion of the Heitler -London method, only now we are deal-
ing with orthegonal one-electron orbitals, sc that we can use exz=tly the method of Chapter 1
in solving *ne pertucrbation problem. Finally, the highest state would come when both elec-
trons were excited to the u " level, so that we should have the singlet given by state Il of Table
Iv.

The two states which we omitted from Table I, corresponding tu states | and II o’
Tsble IV, would be those in which both electrons were in aton: a, or both in atom b. That is,
the wave function would represent the situation where we had one positive ion, and one nega-
tive ion, so that we call such atates ionic states. We know expsrimentally ilict it requires a
considerable amoun; o’ energy to remove an electron from one hydrogen atom, and gitach it
to another atom. Thus these ionic statea correspond o rather high energy levels of the hy-
drogen molecule, and we 1nay expect that it will not make a great deal of differcace in the
wave function and energy of the ground siaie, whether we include them in our calcalation or
not. We shali later actunlly carry out the extension of tae Heitler-London calculation to the
case whare these {onic siates are present, and shall find i fact that they <o not make much
difference in the Heiltier-London methed, so that we understand how we could get 4 good value
from the four ntates of Table I, while on the conirary we reslly need the six states of Tuble
v

It is now very irforming to take our definitions of ug and u.. and actually form the de-
terminantsl »nve *snctinns connected with the 3ix stetes of Table IV. We nev as well lm-
mediately form the sun® and d'ffererce (properly normziized) of stales s¥V and V, since we

-54-

“on N S )V . -



e

2. MOLECULAR ORBITALS FOR THE HYDROGEN MOLECULE

already kncw that thes: are 8¢ :sabinations which will diagonalize the quantuty Sx?‘ + 8 : +
8:2. Wnen we work out the funciions, and write the in terms of a 2~? » we {ind the fol-

lowing:

v a(1)a(2) ¢ b(1)b(2) + a(1)b(2) + b(1)a(2) a(1)8(2) - B(1)2)
2

2(1 + a)

a1)a(2) + u{1i(2) - a(1)b(2} - b(1)a(2) a{1)8€2) - B(1) (2
. 211 - & V2

1)a(2) - wu(1l)o{2 .
m: %ﬂhﬁl (1)a(2)

2 (2.5)
515.2 - .!1&;:! a(1)K2) + A1)e(2)
VeV 0 &) 5

vie D@ - a(UN2) 4(y)42)
2(1 - a%)

IV - Vs glyz! - EEIHZI o{1)p(2) - p(1)a(2)
2(1 - &) 2

When we examine these wave functions (2. %), we see that they have some resem-
blances to the Heitler -London wave functions, and also some differences. i'irst we notice
Sos thilng: the triplet wave functions, the functions denoted %y Ifl, IV ¢ V, and VI, are identi-
cal with the triolet funciions given by the Heitler -London method, 30 that as far as they are
concerned, we shall get the sume answer by either method, and there is nothing more to do.
We have, however, three singlet states, 1, II. and IV - V, rather than the one singlet of the
Helitler -London method. This is only natural, since we have started with six states rather
than four, and clearly to gat the corresponding three singlets out of the Heitler-London meth-
od, we should have to include the ¢v= loric siates there. Leat us sec how that weuld have
worked out. The correspcnding wave functions would have been sirply

af1)af2y HUDM2) - MDe2)  vpvn.sn afl)Bl2) - Bl1)al2) (2.6)

7 S ENE 7
But now ii can be shown that all real solutions of the hydrogen molecule prohlem must have
wave functions which are either unchanged, or wiich change sign, when we reflect the whole
wavé funciion in ihe midpizne betwzen the two avclei, or whea we ‘2tarchange the rolas of
aioms a and b. Thus {f we set up the non-diagon=’ matriz compo.aent between the two states
i By, % 67 we find this comapoaent differsLt from a0, 223 & pertuiizztion problem set up

- ac Lt S O S T —
1 e A . SO } v W# Sve S SR GG TR, — e —

i e

—

—

i R

e i S e 4 e et

|
- — et S . S



THE STDROGEN MOLECULE

just between these two states would result in solutions which would be proportional to the sum
and diflsreacs of these iwu. These functions, even and odd in the nucie! respectively, are
a()a{2) + b(1)b(2 1)pte} - 1}a(2
éz(x + 5) /2 '
_a_m‘-szz - bixzbgzz of1)X2) - p(1)af2)
2(i - &) )

We now notice first that the second of the states of itq. (2. 7) is identical with the state
IV - Vof Eq. (2.5). In either case, this {s the only singlet state which ie od” iz e inter-
change of the nuclei. [t is convenient to have ¢ notution to describe the.varicus properties of
a ntute. and this notation is commorly st up in such a way that we would describe this state
as 2 The superscript 1 stands for a singiet, just as in an atomic configuration; the sym-
bol Z is analogoius o S iz an atomic ccse, and indicates that we hava sero component of or-
bital angular momemtum alozg the axis of the molecule; and the u tndicutu that the state is
odd (ungerade) in the nuclei. Similarly the triplet strte would be denoted 2 , since we ob-
serve that it also is oid in the nuclei We are left, livwever, with two ltn.let states even in
the nuclel, which we syr:buiize L the g (geraic) sanding for sven. In the Heftler-Loadon
method, these a2:c the ordinary et state, and the ionic singlet state given by the first of
the two fnnctions in Eq. (2.7). It ia clear tlat the state I, Eq. (2.5), in the molecular orbital
method, is the sum, ant. the state II the difference, of these two singlets given by the Heitler-
London method (except that when we remember the normalization constants, I and I are linear
combinations of the Heitler -London functiohs, but not as simple a; the sum and difference).

Weo are now ready to consider the matria camponents of the anarsy with 1 uspect to the
#ix states of Eq. (2.5). There are «f course no matrix componeats beiween two different
states of different muitiplicities. Furthermore, there are no matrix components between an
even ar1 an odd functicn in interchaage of the nuclei; for in such a case, ths coztribution to
153 energy listegral from one half of space is canceled by the contribution to the other. In
other words, the only nen-vanishing noa-diagonal matrix component of energy wil) be hetween
the iwo 'z states 1 and II. Sunilarly in the Heitler-London method, the only non-vanishing
component will be tietween the ~ ) non-fonic and fonic states. Since there are two such
stetes, we must solve a qizdratic sccular equation, which we may most conveniently solve
betwesn the states I and M of Eq. (2.5), since these are set up in terms of the orthogonal or-
hitals u and u,. lTh' iinal answer, however, will be the same as if we set up & secular equa-
tion between the ) _non-fonic snd ionic states of the Heitler-London method. for the two
functions of one me are linsar combin=tions of tne two functions of the cther. We shall
shortly solve this secilar equativn. We no‘ico thet bv .ntaoductnu the functions of Eq. (2.5),
in which ¢ack vae {s written 8o as to make 8 8 + S disgonal, and in which ¢ach vz~

is 2ven ¢ cdd in the nuclyl, we have uecured the mutmum simplification o2 the secular oqua-
tion wittch 1 pussi®de. "o symmetry in the nuclei piays a role here sowmawaat sunflar to the

(2.7)
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2. MOLECULAR ORBITALS FOR THE HYDROGEN MOLECULE

orbital aagular momeirtum in an stomic proclem.

It is nuw & slmplc and straightforward task to set up the 1>atrix components of energy
between the various functiore of Eq. (£.5). We can do this directly in the form written, where
the functions are expressed in terma of a. and b. Or we can set up the matrix components of
the one- and two-electron operators with respect to the orthogonal orbitals u g and u. and set
up the matrix components of energy from these bj the rules of Chapter 1. One method is
about as convenient as the other,. in this cas=s, and by either method we set up the components
in terms of the integrals defined in Eq. (2. 3), and tabulated in Table II. We find that we need
just two additional integrals. These are

L o [ a?(x Jalx,btx, K2/ r ) dx,dx, | @9
whict is tabulated in Table i, and '
[ a%(x))a (xz)(Z/rlz)dx dx, = 5/a. (2.9)

By methods simtiiar to those of Heitler and London's paper, it can be easily shown that L is

given by
=Rl (z:10)

- e R 1 5 1_ 5
L=e (znoz+-a-§)+e S 38)‘

We ey now write down the matrix components of energy. 1In the first place, ior the
states I and II in Eq. {2.5), we have the following diagoiial and non~diagonsl matrix compa-

nents:

2, =-2+ % ZJOK LK'#J'[Z#ZL#S[G)

1+ a)?
I T (1 ZKA)@-ALO(K'#le#Sll)(l#A)-4“..
- &)
(-uuzx)(x -&) . zL(u &) - a(5/4 + I + 2K")
0n- 2%
.2 K'+J'/2 - 2L + 5/8 i2.i1)
Kzz:-20§¢ = oL (1-52’,3 [8)
«-242 ju ZKA)(!-A)#(l\'#"[l#S/B)(l-}A)-4AL
(1 - a?y
C(-23a+2K)) - &) + 2L(1 + a2) - A(5/4 + J' + 2K")
(- &*°

‘SZC -J
Hy, = -l .
12 201 - &)

The two lz energies w;.l.l be the solutions of the secular equation formed from these com-
ponents. Naxt, for ihe Zu state, the enei gy nas aizensy been givers as E_, in Eq. (2.1)
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THE HYDROGERN MOLECULE

Finally, for the lzu state whose wave function iz& indicnted as IV - V in Eq. {Z.5), the energy
is
2 . (2J-2Ka -K' ¢+ 5/4)

-2 4
R (1 - %)

(2.12)

In Tuble V =2 give values of H,, H,,, H,; the two energies E( Z ) and E( z ) which sre
ihe two solutions of the quadratic secular equation; and the energy B( ? ) of the state (2.12).

Table V
1 R 1

R K, H,, B, ECl) EZ) EZL1)
0.5 - 0. 4550 4.8109 0. 2553 - 0.4674 4.8232 2.3089
1.0 - 1.9719 1.4077 0.2¢79 - 1,993 1. 4288 - 0.0547
1.5 - 2.1945 0.1173 0. 2840 - 2.2289 0.1517 - 0.7937
2.0 - 2.1616 - 0. 5536 0.3034 - 2.2170 - 0. 4984 - 1.085¢4
2.9 - 2,0676 - 0.9256 0. 3248 - 2.153% - 0.8397 -1.1984
3.0 - 1.9636 - 1,1505 0.3474 - 2.0935 -1.0225 -~ 1,2384
4.0 - 1,7908 - 1.3730 0. 36i5 - 2.0256 - 1.1382 - 1.19%4

1} 3 1

In Fig. 2, we show the energies of all four terms, 12 Y .o Y. Z . asafunctionof
internuclear distance. We also show, for comparison, the qugntmeuunu a:d H,,. the diago-
nal enorgies of the two states I and II of Eq. (2.53), formed from single determinants of mo-
lecular orbitals, representing the configurstions in which both electrons are {n the orbital u‘.
and uy respectively.

-

SITRRIATLLAT NI (ATCIS WSS

¥Fig. 2
Energy of hydrogen molecule as iunciion cf internuciear distance.
Full curvas, energies as dorived from. secular equation. Dotted

curves, dizgonal energizs ol Z stat2s constructed 22 oz molecu-
iar orbitui wave functions, withGut consid=ring tuteraction.
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2. MOLECULAR ORBITALS FOR THE IIT0ROGEN MOLECULE

We can now draw a nufnber of conclusions from our c:lculations. In the first place,
let us compare the energy E{ 5‘ )} of T'able V. which represents the ground state as obiained
by making linear combinations o{ ctur six determinants, and the energy of the stats E:* of Table
IIl, which represent the Heitler-Loondou approximation to the same stats. It {3 clear from the
comparison that the two ag.-ee very closely. Thne energy E(‘ Z )l is slightly iower than E +
as it must be by the variation principle: for E( z ) ) is the ene%gy of the best combination of
the Heltler-London ground state and the ionic state of the same symmetry, and hence by ihe
variation principie must have a lower energy than the energy of the Heitler -London ground
state itself. But clearly the improvement in energy is very minor. Neither energy is « very
good approximation to the actual ground state of hydrogen. The minimum at 1.5 atomic units
is at about the correct internuclear distance to agree with evperiment, but the binding energy
of alightly under 0.23 atorzic units is only about three quarters of the ocbserved binding energy.
Clearly the correction of this error is . not ta be sought by including ionic states in our calcu-
lation. We shall see later, by direct examination of the wave functions, thut we do not ac-
tually make much alteration of the wave function of th> Heitler-London ground state b; includ-
ing a contribution from the {onic state. The energy of the atate (l pX )’ is 80 closely the same
as the Helitler-London 1:’ that we cannot ¢2ll the difference, on a ﬂmfre of the scale used in
Fig. 1 or 2.

. Next, it is interesting to obaerve the limiting energy to which the two statss lzu and

pX , tend at infinite internuclear distance. They both go, as we can easily see from Eqs.
(2. Pl_) and (2.12), to the limit - 2 + 5/4. Here 5/4 represents the imegral of Eq. (2.9), the
Coulomb repulsive interactian of two electrons both on the same atom. This is the approxi-
mation furnished by the cressat wave functions to the energy of a positive and a negative hy-
drogen {on at iniinite distance. We represent the negative ion by having both electrons in the
same orbital a on atom a2, The energ7 is than the same as for two neutrai stoxms, except for
the repulsive interaction of the two electrons on the same atom. It is now clear why these
two states ‘zu and ‘5_‘ , ore miasing {a the usual Heitler-London formulation, since that
formulation disregards ghc ionic states.

A further interesting observation concerns the diagonal energies Hi, and 822 of the
two states I and II, in Eq. {2.5). Thesa onergica go at infiniie separaiion to the limit - 2 +
5/8. The reason for this is clear from the wave functions, as written in Eq. (2.5). Here it
is plain that each of these states, at infinite separation, goes into an equal mixture of the
neitlsr-Londoa ground state, and the Heitler-London fonic state. Hence we should expect the
energy to be the average energy of these iwv siates, as it is. Puiting it another way, {neither
the function Ug OF U the electron has equal chances of being found in either atom. At infi-
nite separation, then, there are chances of 1/4 that both electrons be in atom a, i/4 that both
he in stom b, 1/4 that the first be in a, the sscord in b, and 1/4 th=¢ ihe record bc in'e, %
firatin b. The net resuil s » fifi, pSroeni chunce of an lonic siate. The interaction Lctween
these two states I ani I, resulting from the secula: equation. pushes the states apart, and it

-
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THE HYDROGEN MOLECULE

is clear that this repulsion of the states must persist to infinite internuclear distance. in or-
der Lo resull Ui lis Cudacns vl gy 2evcio aus sise dwe 12 slaive al Luwsiic Gisimito. we s,
in fact, that the non-disgonal matrix component le responsible for pushing them apart, as
given in Eq. (2.1:), doss aotually appreach the Umiting value of 5/8 at infinite diztance, s0
that tiere tho two correct energies are (- 2 + 5/8) t 5/8.

It i{s interesting te consider the actual values of the diagonal eneryy H,,, as given in
Table V, ana c-.,mpare with the energy of the Heitler-London ground state E_ from Table 11,
or with the energy E( z ) of the best ground state from Table V. We see that. in the neigh-
boriood of the minimus, u“ i3 nearly as low as the correct energy level. In other words,
the state L in which both electrone are in the moleculer orbital up has a diegonal energy
which 18 quite a good approximation to the best energy, near the minimum. This is the basis
of the method of moleculer orbitals, which we shall 4iscuss in the next chapter. In thatmeth-
od, the wave fuzciica of = molecule is written as a single determinunt formed from one-
electron molecular orbitals. These molecular oroitals are generally approximated. as we
are doing here, as linear combinations of atomic orbitals, so that the method is cften knows
by that name (ebbreviated LCAO). In the general case, as bhero, we shall find that the diago-
nal energy of such a one-determinant function goes tc t~o high an energy st infinite separation;
bui sometimes it can form quite a good approximation to the actual molecule at its cheerved
internuclear distance. We rhall find later, too, that the method of enr-Jy bands, as applied
to salids, is an extension of tids method te molids, and that it has the swwe convenience, in
that the wave function is written as a single determinant, but the samo weaknsss, in tual the
limiting behavior at large internuclear distances is wrong.

aince the statss I exd I ars orthogonal tc eack other, the sum rule spplies; irat is,
the sum of the unperturbed energies equals the sum d the porturbed energies. In other
words, the sum of H,, and H;, equals the sum of K 's ), -ndt(lz ),. or the avarage of
H,, and H,, equils the average of E( ) andl( “.) St} anot rwayofexprontngthu
is that the perturbation pushe. the two s tes T  and " apart by equal amounts from
the diagsal energies H “ “and Bu. Thie can be Geriﬁed euﬁv aither from our form. 'as or
from cur tables ol values. We also have anoher perturbation probiom tu whicn the lum rule
applies: that between states IV and V of Table IV. This results in the states E and }_j
Here the two unperturbed states are degenerate with each other, so ‘hat the dlqonal onergy of
either one lies midway between the cnergias of Z and Z as given in Table V cr Fig. 2.
It is interesting that this d¢lagonal energy is very nearly the n erage of H,, and H,, (though
not exactly). The energy H), represents the ensrgy c? ihe state wiik both eiectrons in the ug
cruital; atates IV or V represent the encigy of tiwc state with cne electron in u_, cae iR Uy
and the state II, with energy H,,. is thai with both electrons inu . The fact that the srorgy
of state IV or V is nearly midway between H), and H,, fits in with a one-eleciron interpreta-
tion of these states: raising one electon from state us to u, raises the energy from H), to
the energy of IV or V, and r:iising the other electroa raiaes it to Hy,. Doth of these {nvolve
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2. MOLECULAR ORBITALS FOR THE HYDROCEN MOLECULE

approximately the same amount of excitation energy. This excitation en.ergy is what vonld be

ids, as a measure of the energy required to change the one-electron energy as the electron
goes from the symmetric to the antisymmetric orbital. This energy, for instance, goes to
zero at infinite internuclear distance. We se2 by looking at Fig. 2, however, how viclantly
mcdified ths molscular orbital picture becomes, when we apply all the pcr:.u-batlonl. The
loweot and highast states are pushed apart from the energiss Kl. nnd Bzz to E( Z ) nnd
E( z ) , and the intermediate states are pushed apart to the energies of z and z

We lhall find later that simiiar things occur i{n th& molecular orbital and cnergy-bur‘ thoortns.

and ther: 55 uere the most siriking changes come about at large internuclear Jdistances.
An importam obuervatton is_connected with the sign of the exchange integral, which

3
has pushed the two states z and E apart. From the simple theory of the spin degeneracy i

of two electrons, as sketcred tn Chapter 1, we see that when we have two states like [V and V,
one coiresponding to an electron of + spin in an orbital u;, an ele~tron of - spin in another
orbital u,, and the second corresponding to having the spins intercharged, we shall find the
perturbed statas split by an exchange intagral

jul‘(xl) -.z;(zz) u,(x,} ul(xz)(Z/rlz) dx,dx, , (2.13)

provided ihe orbitals are orthogonal. Such an integral is necessarily positive. For from its
form it represents the Coulomb {nteraction energy of a charge distribution “l‘(‘l) uz(xl) on
{tnelf, Such an electrostatic energy can always be transformed, by methods familiar in elec-
trostatics, to en integral of ¢ EZ/Z where ¢ is the permittivity of free space, E the elec-
tric fieid, over all space. dince this lntezrand is everywhere positive, the integral must be
positive. This sign is such that the triplet will always lie below the singlet, as we have in
this case, with the zu lying below the lzu. Another cee2 of the same result is found in
atomic two-el-=trou spectra, where the triplet always lies belcw the singlet. This {s a spe-
cial case of Hund's rule, given empirically in the days before the developmen: of wave me-
chanics, a~ccrding to whi~h the multiplets of highest multiplicity tend to lie lowest in an
awomis spectrum,

This rule is completely dependent on having ortnogonal orbitals, as we see by com-
parison with the case of the Heitler-London method, where the orbitals are not orthogonal.
Ths intaraction between states It and III in Table I is of =% the same sort which we have here,
with that cue exception; and yet the singlet lies lower in the perturbed problem, as we see

‘from Fig. 1. The sepzration here depends on the exchange integral K,, of BEq. {2.1), which

te wriilen out lu detail in Eq. (2.2). When we examine the terms of H,, we see that the terms
ia 2/r b a=d Z/rz‘ are the ones which come in wiin negative sign, and whick ouiweigh the
positive terms, and result in a negative exchange integral H), a8 ws2cc o Tauie 0, These
ierms necessarily vanisu il the cobituls a and b are orthogonal. Thus we seec that any ex-
planstion of the binding of che moircuic, resulting in & singlet ground state, in terwas of & 2pin
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THE HYDROGEN MOLECULE

degeneracy, as in the method of Heitler and London, iz impo=saibje {f we use orthogonal or-
bitals. We can ses this more clearly in the next section, where we set up orthogonal orbitals
A s=d B, rather similer to a and b {n that A {s concentrated non atom a B on atom b, and
yet orthosonulized tc each other. When we use these orbitals, as we shal) see, the triplet
ntate lies below the singlet, and we are forced to take {n.y nccount the interacticn with the
tonic etates to gat a correct picture of the xrzu:.l atote. Lot us now proceed e this method
of describing the moiecule, iur comparizon witk these J'roady uscs.

3. Orthg‘g_n:ltnd Atomic Orbitals

The molecular orbitals u g and u, are not the only orthogonal combinations of the or-
bitals a and b, which we can use for expressing our problem in terms of orthogonal orbitals.
We can, of course, set up an infinite number of orthogonal combinations of a and b, but moat
of these would not appeal to us, for we naturally wish a ceriain amour: of symmeiry as re-
gards the nuclei. Our functions u g and u, are particularly ccnvenient in this way, in that the
determinantal functious formed from them, as given in Table IV, automatically show the prop-
erty of being symmetric or antisymmetric in the nuclei. The original functions a and b have
a somewhat differeat symmetry property: one goes into the other when we refiect in the mid-
plane between the atoms. Let us ask if we cannot set up two orthogonal orbitals A and B,
linear combinations of a ard b, which have this same property, so that the perturbationprob-
lem set'up in terms of them will have as close a resemblance as possible to the Heitler-
London problem. The answer is that we can. Let us demend that A = c,a + c;b, B = c;b +
c 8, wharocl ande &ra tc be chosen so as to make A und ermllzodundorthgoml
We can impose this eonditton ezsily, and ke dstermiraiion of ¢, and c, becomes a simple
problem in algebra. We find without trouble that

-;-4’——‘—, czs 1 - 1 "
2/1+2 2.,1-4 2/ivad 2/71-2a

We sue that c, is positive, c, negative. Furthermore, in the limit as internuclear distance
becums:s large, when A goes to zero, < approaches unity, <, approaches zero, so that inthis
limit A and B approach a and b rospectiveiy. At smaller distances, however, c, decreases,
c; increases numericaily, so that A i{s made osatly of a contribution of a, but supplemented
by a contribution of b with opposite sign, just large eno:zh to make the two funciions orthogo-
nal. We shall indicate the relation of these orthiogonal orbitals to others which have been pro-
posed for molecular and aclid-state problems {a a Jater section.

1.et us now @et up our perturbation problem in terms of the orbitals A and B, and se2
bow its resu'ts work out. By cow, we realize that the final states will be exactly the same as
thosa found by the methad of malecular urbitalz, or us found by the Kaitler-T.cndon method
swwieTizated by fonic states. Tut the steps encountered in getting the resuits mli be quite
differeat. Wizt == =r2 v23lly doing is expioring a number of different meikcds of calculatiorn,

(2. 14)

Cl'
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3. ORTHOGONALIZED ATOMIC ORRITALS

to gee which one 18 most convenien: for generalizaticn to problemn of more complicated mole-
cules, We cen set up g table, like Table I ur Table Iv, indicating the determinantal states
which can be covstructed out of the orbitals. By now. we realize that we must use all six
aossible determinants, so that whiie we have the four stetes like those of Table I, in which
one electron is 1n orbiial A, one 1n B, we must alsc have the two atatcs i whizk both sler-
trons are in one orbital. We can make linear combine’ions of these determinants, as before,
te take advantage of our information about spin and symmetry. "Thus tne four states analo-
gous to those of Teble I will combine into a triplet, ): and a singlet, 2 The two ionic
statea, in vlu{:h both dectronll are in A or both in B, will combine into two singlets, cne of
the nature of Z , the other Z When we do this, we find, as we should expect by now,

tuat the wave functinn- for the ): and the ): states are juat as in the two previous meth-

ods, 80 thial we have no nev protnem here. Only the {wo ): s are different.

Let us denote as Z the -tate formed from the two 5etermtnu"utn which one elec-
tron is in A, one in E, and as z that in which both are in one orbital, analogous to the
ionic atate in the Heltler-London xgethod. We then find that the two wave functions are the

following.
g JZ(I - i) 2

1. " a(1)a(2) + b(1)b(2) - A{‘(l)b(z) + b(l)!(z)} a(1)A(2) - B(1)ai2)
g 20 - &) . 2 ’
Thke matrix components of energy between these states, which we ahall denote Hl 1’ lil 2 Hao

are given by

= J2I-2ka)i - &)+ (K e afzes/8)i e £) - 4L _ (5/4 - J))
Hye-2ege (1 - a)f 2(1 - a%)

(2.15)

2 . (27 -2kaM1 - By 4 (K 4 324 8/8) 1+ &) - 4aL , (5[4 -T)
Hoy & =2 7 + 2.16
22 R’ (1 - a2)? 2(1 - &%) (218)

(- 2344+ 2K)(1 - &) + ZLL«t a?) - as/e4 9042k

Hy, = (1 - a2

By romparison with Eq. (2. 11), it is czlesr that the roots of the secular 2guaiicn formed from
these matrix components, derived from the orthognralized atomic orbitals, will be tho same
as for the secular equation formed from the ~omponents of Eq. (2.11), formed from molecular
orbitals, In fact, the interrelation between Eqs. (2.11) and (2. i6) is so close that we can im-
mediately read off the component=s =¢ Bn. lz 1¢) froxn the entries of Table V. i Fig. 3, we
show the energies of ull fuur atates 1__ 2 ¢ ): and Z for comparison, es in
Fig. 2. and *se snergies H,, end K, com,...eo irom Eq (2.1%), the diggoral matrix com-
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TEE HYDROGEN MOLECULE

ENERGY (ATOM: NSTS)

R

WTEANUOLEAR DISTANCE (ATOMC UNITS)
Fg. 3

Energy of hydrogen molecule as function of internuclear distance.
Full curves, ensrgiss as dor& ved from secular equation. Dotted

curves. diagonal energies of ¥ states constructed from orthogo-
nalized atomic orbital tuncuons. &ithout considering interaction.

ponents cf energy for the two states Z and E "ot Eq. (2.15).

Wo can now draw some ratker st{-tktng conilultonn from the results of Fig. 3. The
state 12 is the one formed irom orthogonalized atomic crbitals A and B, in just the same
way that ground state of the Heitler-i.ondon method is formed from the ordinary stomic
orbitals a and b. In contrast ¢o the Heitler-London ground state, shown in rig. i, :&i::!: ,
shows Dinding aimost equal to that of the best iuuction which we have set up, the state . of
Fig. 3 shows nro blndm( nt all. The btndma arises »ntireiy in the secular problem betwee‘n
the two states ) and E . In other words, ustng orthogonaltud atemic orbitals, it is
imperative to carry out the :gmxlng of ths two states and E » of which the second is
analogous to the ionic ntate in ine H=itler -London methts This {8 a contrast to the Heitler-
London csse, where we have already seen that mixing in some of the tonic state makes a very
small difference in tha final energy of the ground atate. We can see from Eq. (2. 15) why
there is this difference. The state 2 Z_!. as we see from Eq. (2.15), is made up of a con-
tribution fi:vun the function aiiju{2} + bfx)a(z). which {g the Heitler-London ground astats, but
alac a contribution, proporticnal to a. of the functior a(l)a(2) + b{ijb{a), which {8 the Heiler-
London tuaic state, This latter function, coming in as 4 increases, or as the atoms get
closer together, compietely neutralizes the attraction found in the Heitler ~-I.ondon ground
state, and cesuits in a vepulsive state, am 52en ‘n T3, 3.
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4. COMPARISON OF VARIOUS WAVE FUNCTIONS

it is ciear from quite a different argument that this state must be repulzive. ‘he two
slaies lz ' anu ‘Zu are geri1vec iroun 2 se~culgr equation between the two states in which or-
bital A has an electron of + spin, B har one of - spin, or vice versz. This secular equation
is like the Heitier-Londcn secular equation, with the exception that the orbitals are orthogonal.
Bince they are o~rthogonal, the exchange {ntegral between them must be positive, and the irip-
let state must lie below the singlet. We see from Fig. 3 that this {s indeed tae case. Fur-
thermore, tle rather smail separation between singlet and triplet shows that this exchange
integral is numerically small, in complete contrast {0 th2 Heitler-London csse. Thus we see
in still another way that the uze of non-orthogonal orbitals is a necessary featuse of the
Heitler -London method. On the other hand, we must realise that it is only the simple Heitler-
London method in which {onic states are not considered which is dependent on this use of non-
orthogonal orbitals. The beauty of the Heitler-London method is that we do not have to solve
a secular equation (aside from the trivial one involved in separating the singlet and triplet
states, in order to get the ground state; the wsve function can be written down by inspection.
Onca we incinde fonic states, however, we must solve s quadratic secular equation to iind the
ground state, and we have seen that the final result of solving this secular equation is the
same, whether we use the Heitler-Londonr fur-tions tncluding the ionic states, or the molecu-
lar orbiial states, or those formed from orthogonal stomic orbitals. It ie then this more gen-
eral procedure, including fonic ststes, and using orthogonal orbitals of either the molecular
or stomic variely, which sives us a method which can be generalized tc the case of more com-
pliceted molecules.

4. Ccmparison of Various Wsve Functions

In the preceding sections we have examined three different starting points, all leading
to the same final result: the Heitler-London method supplemented by ionic states, Ll .uewnod
of molecular orbitals, and the method of orthogonalized stomic orbitals. It is interesting to
intercompare tn® wavww iunctions resulting from these methods, so as to see, {f pcasidle, what
their uhuom are. We have seer. that all three starting poiris result in identical wave func-
tic:..: for the z and E states, 8o thit we have no problem of comparison to carry out
here. It is only vith the two lE functions that w2 have diffeiences. We can writs these two
functions, 2 and z ' as lineai’ combinations ot the Heitier -Londai ground state and
fonic state; as lunu' canbhutiom of the molecular orbital states I and 1! of Eq. {2.5); and as
linear combinations of the orthogonalized orbital states of Eq. (2.185),

In examining the interrelations between these various functicins, ii {s useful to use the
concept of the scalar prwiuct of two vectors in s very literal sense. If we have two normal-
ised functicne 2, ond ), wa know that we can regerd them as unit vectors in a function space,
and as far as these two veciors are concernoed, this spuce iz merely a plane, 80 that it is
adavess 5 grapbical dissuesion. Then the integra) j u,(x) “z(") dx i{s analogous to the acalar
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THE RYDROGEN MOLECULE

product of tkese two vectors, or to the cosine of the angle between them. We can then exhibit
all the fur.ctions considered in our present discussion as uait vectors {n a plane, and can find
the angies butween them. Let us find the angles between the varioua vectors, so tnat we can

exhibit them graghically. !

We know first, of course, tha! the two molecular orbital functions of Eq. {Z.5) are or-
thogonal to each othar; that means quite literally that the vectors representing them are at
right angles to each other. Similarly the two funciions of Eq. (2.15) are st right angies to
esch other. We may well first ask, what {s the relation betwesn thaze iwo sets of functions?
If we take the scalar product of one of whic functions of Eq. (2.5), and one of those of Eq.
(2.15), we find that it is 1/ /Z. This is the cosine of 45% {n other words, the two orthogonal
weisra ofF ohie act form (lse bisectors of the angles between the two orthogonai vectora of the
other set. We can in similar ways 2ind the sngles between the other sets of vecturs. ‘Thus
we find that the cosine of the angle between the Heitler -!.ondcn ground state and tha {onic state
1s 24/(1 + a%). Thisis gero at infinite internuclear distance, where Ais zerc, so that in this
1limit the vectors are orthogonsl; but st smaller distances it approaches unity, and the vectors
becaome parailel to each other. This is the fundamental reason why we made sucn a small
chinge i{n the energy of the Heitler-Yondon ground state by adding some of ti'e fonic state: we
were really hardly changing the wave function at all, though we were writing it in quite a dif-
ferent way.

It is easy in similar ways to find the angles between all the various functions which we
have considered. Thus we find easily that the conine of the angle between the Heitler-L.ondon
ground state function, the molecular orbital ground state function, as given by function I,
Eq. (2.8), is (1 + A)L/2(1 + Az). For the angle betweenr this molecular orbital ground state
function, and the final ground state function arrived at by solving the secular equation between
states ! and 1T, Eq. (2.5), we must remembar that the final function may be written as s linear
combination T,U, ¢+ T,U,, where U,, U, are the functions I and I of Eq. (2.5). From the
linear equations determining the T's, we see that T,/T, = nxz/(“zz - n:). where H,,, H,,,
and E are given in Talle V, the E for the ground state being denoted as E( 2 g1 in tnat table.
Since U, and U, are normalized and sithogonal, we know that T, + T,% = 1, and that fur-
thermore T ) itself is the desired cosinz of tha angle between tke function U, and the linear
sGanbination T 1V + T,Up. We then find st once that

Tl [ p—
/.1 + nxz!/(”zz - z:)!

Using inese relationg, we can then find ti:zc angles between the various vectors, or
functicns, in question. We show these in Table VI. We have referred all iheae angles to the
direction of the final fnnctton represerting the ground state, as zero, so that ihe final function
representing the other }‘ state is in 2very case 9n°. We show the angles »of the ivilowing
functions: the Heltier -m"dm. groand state; the Heftler-l.onion {onic state; the molscular
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4. COMPARISON OF VARIOUS WAVE £UNCTIONS

Takle V1

R H-L Ground State  H-L fonic Statz M-O Ground State  O-A-O Ground “tate
0.5 1. 6° 4.0v 2.8° - 42.2°

1.0 0.1 8.8 4.5 - 40.5

1.5 -2.2 15.9 6.9 - 38,1
2.0 -4.3 24.9 10.3 - 34.7
2.5 -5.6 35.2 1.8 - 30.2
3.0 -5.6 46.0 20.2 - 24.8
4.0 -3.0 68.6 31.3 -13.7

- 0.0 90.0 45.0 0.0

crvilel ground states and the orthogonalized atomic orbital ground state. From ‘hese, we can
g2t the angle of the molecular orbital excited state by adding $0° o tie angle of the molecular
orbital ground state, and can get the angle of the orthogonalised atomic orbital excited state
by adding 90° to the angle of the orthogonalized atomic orbital ground state. We observe that
the angle of the molecular orbital ground state is 45° greatcr than that of the orthogeaalized
atomic orbital ground state, as it should be.

Ths firs: striking observation from Table V1 is the closeness of tha Heitler-London
ground state to the correct wave function. as shown by the smallneas of the angle batween
them. Tin ough the whole range from infinite distarces to smali distances the angle is only a
few degrees. We also see how small is the angle between the Heitler-London ground Jtate and
ionic state for small interatomic distances, though of course these two functions tecome or-
thogonl at {=flaive distance. It is this smallness of angle which, as we have already pointed
out, makes it relatively unimportant wheiber we introduce some of the {oniz state to correct
the Heitler-London grozid siste. Then again, we notice the amall angle between the molec=-
lgr-orbital ground state and the correct function, at small internuclear distances. It {s this
small angle which "-esults in the approximate correctness of the molecular orbital function
near the actual {rtornuclear distance. On the other Land, we see that this ungle approaches
45° at {nfinite intarnuclesr distance, explaining the failure of the molecular orbital method at
large disiances. Finally we note that, though thie orthogonalized atonic orbital ground stzte
is correct in the 1imit of infinite internuclear distance, it becomes extremely poor near the
actual internuclear distance.

With this comparison c? wave functions, we have finished our study of ihe various ap-
proximations to the hydrogen problem arising from simpie use of determinantal wave functions
oased on the 1s atomic orbitals on the two atoms. A coinparison of the type discussed in this
chapter seems to have beon first given by {he present writer, (4) in & paper in which the reasults
were presented graphically: the cziculations on which the graphical discussion was based were

J. O Slater, Phys. Rev. 35, 509 (1930); 41, 255 (i532).
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identical with those of the present chapter. A later discussioun by Welnbaum(s) carried
through similar calculations, but extended them by varying the 15 aiomic functicas out of
which the malecular functinns were constructed; these 1s functions were given variable pa-
rameters which were varied as a function of innternuclear distance, to get a minimum energy
for the ground state. resulting in appreciable improvement in the wave function and #.ergy at
the obssrved internuclear distance.

Discussion of the comparison between the various wave functions, of the sort given in
the present section, was given by the present writcr«’) in a paper whoae main purpose was to
examine the usefulness of the orthogonalixed r*omic orbitals for problems in molecular struc-
ture. Functions of this type had been introduced by Wamuer(n for use in crystal problems,
and had been extended to molecular problems by L3wdin, (8) who has also made much nge of
them in the study of solids. We shall have much further use for functions both of this type,
and of the molecular orbital type, in our further study.

It should not be thought that a comparatively simpole treatment of the hydroges molc-
cule, such as we have discussed in this chapter, represents all that has been done on this im-
portant problem. We have presented thene simple calculations only on account of their direct
application to further probler.s of more complicated molecules. There have been, however,
a great many papers writien on ihe theory of the hydroger molecule, though we shall not quote
many of them here. We give later {a this report a very full bibliography of papers on all
branches of the theory of the electronic energy levels of molecules, and any papers in that
bibliography deal with hydrogen. Many of them were undertaken with a view of throwing iight
cn more complicated probiems of malecular structure, and we shall comment oa them at suit-
able points in later chapters. Twc of them, however, =re 80 straightforward that they de-
terve some comment at this point.

In tho first place, one very obvious improvement in the theory as we have presented it
would be to vary the sise of the atomic orbitals out of which we haves constructed our wave
functions, in a way depending on internuclear distance. At infinite separation, it is reason-
able that we should us:lvdrogen orbitals, but as the nuclei approach each other, the problem
approaches that of a helium atom, which it reaches when the nuclei come into contact. This
helium atom has a self-cbasistent solution {n which the wave functions are hydrogen-like, hut
corresponding to an effective nuclear clhiargs ztare~r two units than one; as a mstter of fact,
hydrogen-like wave functions correszvnding to a nuciear charge oi 1. 6875 uaits prove to rep-
razent ths best appreximation. We should expect, then, that we could improve matters con-
siderably if we carried out an analyais just like that of the present chapter, but used {cr 22ch

%S. Weinbsum, J. Chem. Phys. 1, 593 (1933).
6J. C. 3later. J. Chem. Phys. 19, 220 (1951).
7G. wannier, Phys. Rev. 52, 1Si (i337).
%p.-0. Lowdin, J. Caem. Phys. 18, 365 (19%0).
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4. COMPARISON OF VARIGUS WAVE FUNCTIONS

internuciear distance an atomic crbital which would not be prorortional ¢ T,

the hydrogen-
like function {whera » {3 in atomic units), but e'?"r. where Z is an effective nuclear charge,
which may be expected to vary from 1 at infinite separation, to 1.6875 as the separation goes
to zerc. It is easy to carry out this calculation: all the integrals are essentially as in the
present chapter, but with factors multiplying them which aie as simple as Z or Zz. In the
final answer for ene:-gy, then, we vary Z to make the ener?' a minimun, for each internu-
cleas distance. 3uch a calcuiation was first made by Wang, 9) and was extended by Weinbaum,
in the paper a)ceady referred to, and has been used and extended by oiher writers. it makes

s very signif/icant improvement in the erergy, reducing the discrepancy between the observed

the valur, found by the Heitler -London method.

A very much greater improvement was made in 1923 by James and Coolidge, (10)

whose

* work bus beccme a classic of careful numerical solution of Schriddinger's equation. James

and Coolidge gave up the attempt to build up a wave function by starting with atomic wave func-
tions, hut instead considered directly the form of the differential equation, and the best meth-
ods of approximating its solution, Lat us consider the problem 1in the fcllowing way (though
thia is 0t precisely the method James and Coolidge used). The first electron may be de-
scribasd by three variables, of which iwe are coordinaies in a plane passing through the clec-
tron and the two nuclei, and the third is the angle of rotation of thie plane with respect to a
{'ixed plane through the nuclei. Similarly the second eiectron may be described by two vari-
abies in the plane passing through it and the nuclei, and by the angle of this second plar-

The whole wave function of the ground state will not depead on all of these six variables, how-
aver: for on account of the fact that its component of orbital angular momentum around the
axis of the molecule is zero, it can be shown that only the difference of the anglcs, or the
angle between the two planes, can enter the solution, and not either angle separately. Thas
there are really only five variables dster=ining the wave function. James and Coolidge now
st up a series of terms depending on these five variables, falling off exponentially s both
electrons went fzr from the nuclei, sc as to insure proper hehavior of the wave function at
infinity, and chesen £9 that A comwuinatiica oi these functions would be almost sure to be flexi-
ble cnough to represent the true ground state sccurstely. As parameters, they used the co-
efficients of these various functions, and they computed the energy s= a function of the param-
eters, anxi varied the parameters so as to get &« minimum value of energy.

They carried out their procedure by starting with a rather small number of functions,
minimizing the energy, and then adding a term at & tima, to see how much improvement they
got. They contiinued the process up to something ci the order of fourteen ter=s, at which
soint the addition of further terms was making a negligible improveisent. The net result of

- - e e e e e e e e e e -

98. C. Wang, Phys. Rev. 31, 579 (1328).
104, M. James and A. 8. Coolidge, J. Ciiem. Fiys. i, 535 (1932}, and (ater papers.
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THE HYDROGEN MOLECULE

this was that their final energy diiffered from the observed energy of the molecule by a quan-
tity of the order of magnitude of the experimentel uncertainty in this energy. Ia other words,
they had done twe things: (hey had produced a wave funciicn which was a practically perfect

e mne

soluticn of Schrodinger's equation, im ihis form of a sum of 2 number of analytic terms; s
they had verified that the sciuticn of Schrodinger's equation agrzes with experiment with great
accuracy in this case. This latter point should not be cverlooked, in ¢valuating the impor-
tance of their resuli. Aside from the hydrogen atom: and a few soluble problems, the suc-
cesses of Schirddinger's equation have been mostily quaiitative, on account of the great diffi-
cuily of getting accurate numerical solutions. Very few many-body problems have been
carried through with very great accuracy. One of these is the ground state of the helium
atom: Hyileraas, (11) zome yecars before James and Coolilge, had used s very similar method
for this probiem, and had likewise found a result agreeing with experiment to prextically
spectroscopic accuracy. The hydrogen molecule is practically the only other case. The very
good agreement in both these cases has convinced everyone that the Scurddinger equation
Te&ily doss agree with experiment for the many-boiiy as well as the coe-body problem, and
this encourages us to take the further steps to be described in these notes, approximating
more and mcre closely to problems of more complicated molecules and of solids, confident
that the resulis will 'approach experimental values more and more closely, the further we
cerry cur approximations. This confidence is at the very foundation of cur theory of mole-
cules and solids, and it i= based mors than anything else on the careiul calculations of Hyl-
leraas and of James and Coolidge which we have just quoted, together with the other aspect of
the problem, the wtdespréad qualitative egreement beiwesn sxperiment and the theories of
multiplet structure and such things provided by our approximaie methods.
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CHAPTER 3
THE METHOD OF MOLECUi.AR ORBITALS

Follawing the wo. k on the hydrogen molecule which we have described in the preceding
chapter, there has been a very large amount of theoretical work on the atructure of molecules
of all sorte. We shall present later = bibliography of the pepers on this subject; it comes to
many hundreds of papers. It is obvious that we cannct quote all this work, or give references
to it as we proceed, and in our discussion we zhall generally merely mention the principal
workers in the fleld and the nature of their contributions, leaving it to the reader to locate
the'> papers in the bibliography.

The first thing to notice about this great literature is that it {s rather sharply divided
into two mair achocls of thoughi. One of these developed directly from the work of Heitler and
London, trylng to set up wave functions for compiicated moleculecs Sy direct analogy with the
Heitler-Loondon function for hydrogen. We shall discus:s these 1nethods in the naxt chapter.
They suffer from two great drawbacks. In the first place, they deal with non-orthogonal
stomic orbitals, as the Heitier -Loondon method does; in the second place, they must use =
linear combination of determinants to get a representation of the ground state. The se~ond
school of thought developed from the fact that the molecular orbitsl type of wave function,
which we menticred in the preceding chupter, itself forms a fairly good approximation *o the
ground state of molecules. This method {s more convenient than the Heitler-Loandon method
iz that it deals with a function which is mmade up 2= a single determinant. ang {lis molecular
orbitals which it uses are automeatically orthogonal. It is thus simple to use. It has the com-
pensating d==whback that, as in hydrogen, it does not reduce to the correct limiting values at
infinite internuclear separation. For this reason, work with ths molecular orbital method has
gonserally been carried out only at the equilibrium internuclear distance or ciose to it, and
there it has shown itself capable of giving a great many valuable results. On account of its
simplicity, we shall describe this molecular orbital method first, devoting the nresent chapter
to {t. Then in the next chapter we shall consider methods which involve taking linear combina-
tions of detarminants. This includes the extension of the Heltler-L.ondon method to compli-
cated molecules, but it als~ includes the gencral method of configuration interaction, similar
to what we have described in Chspter 1 fer atoms. Tihat method in its general form is more
inclusive than the Heitier-L.ondon procedure, and represents the best miethod which we have
for approximatiag to the solution of Sch~Adinger's equation for molecules and solids.

1. The General Nature of the Molecular Orbital Method

The molecular orbital msethod has grown up somewhat gradually, and it iss become
clarified as it has developed. Before we irace this historical development, we wish to know
clearly what the mcthod is. In the present ==+tizn, therefore, we shall state what we shall
ma«a by tho methos. Then we sha)l go on [u later Lections to Jescribe ite history, and ¢ zials
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THE METHOD OF MOLECULA\R OBITALS

the various avproximations which have been usad to carry it through in practice.

rielly. the method is a straightforward applicativn of the method of the aeif-consist-
ent field. We assume that we solve a one-electron problem for the motion of an electron in
ihe field of the nuclet, and the averaged charge distribution of all other electrons. The re-
sulting wave functions are called molecular orbitals. Each will have its one-electron energy,
as in de aiomic case, ard as in that case we can show by Koopmans' theorem that these one-
elactron energies approximate the snergy required to remove the corresponding clectron {rom
the molecule. We then build up the ground st=te of the molecule by filitng up these wave func-
ticns, starting with those of the lowest one-electron energies, with one electron each (for each
spin), until we have xccomodated all electrons. We note that Koopmans' theorem, by a slight
extension. indicates that this should represent the state of lowest energy. For we can argue,
as we do in the study of x-ray term values, that the energy required {0 move an electron from
one energy level to another is approximately the difference of the one-2lectron energies of the
two levels, 30 that certainly the energy of the whole system will decrease {f we go from a
state in which one inner level is unoccupisd, to another in which an electron has fallen from
an upper level into this previously unoccupied inner level. In other words, we can justify the
siementary picture that all electrons want to fall into the lowest pos.i-le energy levels, to get
the ground state.

In an atcia, in a similar way, we set up the configuration of the ground state by filling
all one-electron levels in order of increasing energy. From each resulting assignment of el-
ectrons to wave funttions, we set up a single detsrminantal function. With atoms, we have
seen that on account of orbiial and spin degeneracy, we very often have a number of such de-
terminants whose diagonal energies are about the 2ame, so0 that -2 must treat the degeneracy
problem between these determinants by solving a secular equation, resulting in a linear com-
bination of the resulting detorminamis. With molecules, on the contrary, in a grezt majority
of the cases we find that there are just enough electrons to i1l certain one-electron functions,
and that there iz a considerable difference in eneryy between this configuration, and any other
coafiguration formed by putting ceriain electrons in other orbitais. Thus in the case of H,,
we have found two orbitals, which we called “g snd v, which are the two lowest orbitals in
the problem from the standpoint of energy. With ocur two electrons, we can put one of each
spin in the n' orbital, io represent the ground staie. If one {s remnved from this orbital, the
next higher state.coinss if it {s in the u, orbital, the remaining one teing in ug and our dis-
cussion of Chapter 2 has shown that this corresponds to a considerably higlier energy. Thus
» single determinant corresponding to the tyo electrs:é Loing in the ug orbital, one with each
apin, represents by iizeX a good arproximation to the ground state, and it is this which we
have described as the molacular orbitai function, in Chapter 2.

Rimilarly in a great majority of molecules we can represent the ground state by a ein-
gie dctermins~’: and the molecular orbital method ia just that in which this single determinant
is used as an sppro.imate wave function for the molecile. Having formed the determinantal
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1. Tnk GENERAL MATURE OF THE MOLEU(CLAR ORBITAL METHOD

wave function, we can then proceed to find a potential from it, and to use this potential as the
starting peint of a further stage of the self-congi=tent method. Since we arc dealing with a
single determinant, we have a case to which the Hartree-Fock method is directly applicable.
On the other hand, if we are interested eventually in interactions with higher configurations,
80 that we wish to ¢ird a set of orthogonal orbitals, we will do better to use the extension of
the Hartree-Fock method described in Eq. (1.21), since this will give a single potential func-
tion for all the orbitals. In mos: of our descriptive discussion we shall agsumad that this
method of Eq. (1.21} is used, though in some of the applications a method clo er to the Har-
tree-Fock has Yeen applied.

It is not an accident that most molecuiar problems can be approximate . by a single de-
terminant. We recall the atomic cases where a similar approximation is good: w= have such
5. cass whsn the ground state is a lS state, and this results when the electrons form a closed
shell, as in ths insrt gas atoms. Ever siace the original suggestions of G. N. Lewis on the
neture of valence, ihc chemists have believed that there was a strong connection between the
existence of stable molecules, and the formation of a closed sheli of some sort by their outer
electrons. This is only a qualitative idea, which can be made more precise as we go further
{nto the theory; but it makes it seem very likely that the reason why many malsacules have a
ground state which can be approximated by a single determinant is the siinple fact that it is
these molecules which are stable, and which are ordinarily formed in nature. There are of
course some excepiions to {hia rule, but they are relatively uninportant. And of course in
the excited statss of molecules, we no longer have this simplification, and must use combina-
tions of determinantal functions. The ground states, however, are particularly appropriate
for the use of ths moleculer orbital method, on account of this fact that generally they can be
well described by a single determinantal function.

We have talked of this self-consistent calculation as if it were a simple and straight-
forward thing, and in principle it is. In practice, however, it is so hard that hardly any
maoalecule has ever bsan carried through by it; the only reelly s<rious attempt to use it in de-
tall has been ‘hat of Coulson!!) on H,, where by methuds similar to those of James and
Coalidge, he obtained molecular orbitais much closer t¢ self-consistency than the simple
combinations a ¢ b which we heve mentinned in Chapter 2, and got a corresponding lowering
of the energy of the moiscular orbital states though it still was about as far above the correct
snergy of the ground state as the molecular orbital energy which we have discussed in Chapter
¢ was above the iowest eneryy calculated by the methoda «f Chapter Z. The reascn {or this
difficulty {s obvious: we have to solve a ona-electron problem of the motion of an electron in
the field of many centers, and this problem, unlike the corlesponding ceantral-field proulem
for an atom, does not permit separativu cf varisbles. and is very hard tc scive accurately by
any approximation meihc2. Accordingly we musi look for the best methods we can find for
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THE ME{HOD OF MOLECULAR ORBITALS

approximating to such a solution, and we shall diacuss this further in the presert chapter.
Even { we have found an approximate wave function, we sti!l have further difficulties shecad,
for we raust {ind the diagonal matrix component of thie whole energy, in order to get the total
energy of the molecule, and this involves intcgruls which may be very husd 0 evaluais. As a
matier of fact, most of the work which has been done 80 fer has contented {tself with a caicu-
iation of the one-clectron energies, and has not carried through the whole calculation of the
eaergy of the molecule.

2. The Bistorical Development of the Molecular Orbitai Method

With the sketch which has been given in the precedinyg section, we understand what the
molecuiar orbital meihod is well enough 80 that we can now go back intelligently and consider
its development. The names of three physicists are connected with {ts origin, more perbaps
than of any others: Bund, Mulliken, and Lennard-Jones. Mulliken and Hund had been work-
ing at the analysis of the electronic spectra of diatomic molecules, even before tho beginning
of wave mechanics in 1926. We realize. of course, that each electronic energy level of a di-
atomic molecule corresponds to a curve of energy as a function of internuclear distance.

This curve represents the energy of ‘he electronic system, including electronic kinetic en-
ergy, elsctronic potential energy in the fields of the nuclei and of each other's repulsions, and
e auciear repulsive energy, as a function of distance; when the nuclei are assumed o be
beld fixed. Hund and Mullixen were sngaged in applying the ideas of the vector model and
complex spectrum theory to the observed moleciles, st tlie time when wavs mechanics was
{nvented. It was very natural, since the energy levels of the separated atoms could be ex-
plained by the seif-coasistent field method, plus the interactions between angular momentum
vectors ircated {n comigiex spectrum theory, tc supposs that a similar method could be used
for the combinec molecule as well. And in this waythey began to think of a molecule as built
up from one-electrra wave functions which wsre solutions of the two-center problem, the Jow-

est ons-electron energy levels being filled far enough to accomodate all the electrons, and the

upps. ones being erxply, though occupied in excited states.

The problem of the solutions of the two-center problem thus became of great impor-
tance. The firsi cane of this sort that was accurately solved was iliat of the hydrogen moie-~
cule-ion, whose sclution by Bnruu(z) has already been mantioned. This exact soiution,
howerer, was less useful than ike apnroximate solution made up as a linear combination of
atomic orbitals, such as we have discussed in the preceding chapter; this way of approximat-
ing to the two-center problem wss discussed, among others, by mmf 2} and by Morse and
Btueckelberg. (4) Then i1 1969 Lennard-Jones, in a~ important peper, (5) connidered the

® o eo'® o o ®» ®» o oo oo - o

i¢. Burrav, Xgl. Danske Vid. Sels., Mat. -fys. Med. 7. 14 (1927).

L. Pauling, Chem. Revs. 5, 173 (1928).

“P. M. Moras sxd E. . Bicvckelberg, Phys. Rev. 33, $12 {iS29),
5J. E. Lennard-jones, Trans. Farziay 8oc. 25, 668 (1529).
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2..THE HiSTORICAL DEVELOPMENT OF THE MOLECULAR ORBITAL METHOD

probable nature of the energy ieveis as a function of internuclear distance. in the problem of
two attracting centers which represented successively ths self-conzistent fielde for the mole-
cules Li,, Be,, B,, C,, N,, O,, and so on. It was of course too hard tc get exact or even
spproximate solations for these two-center problums, but by piecing togethe: varicus suris of
information, Lennard-Jores was able to deduce the general foim of ths ecnergy levele, and to
finG waich were the loweet, and conseguently which ones were occiupied in the ground state of
the molecule. In this way he arrived ai inloiinatiica about the ground statee, and wae even
able to explain why the molecule o. is paramagiisiic, having a triplet state as its ground state.

Those general principlees were rapidly extended, by Hund, Mulliken, Herzberg, and
~there in the next few years, to give a good des-ription of the etructure of the diatcxmic mole-
cules. both homopolar (consisting of two like atoms) and heteropolar (having two differcnt
atoms). It was a natursl etep to etart on the polyatomic moleculee, and Mulliken etarted in
1932 writing papeis about polyatamic molecules; for these, and the large literature of the
subject, the reader is raferred :s this Libilogiapiy. In one particularly important paper, (6)
he discussed the symmetry of the electronic wave function, arising {from the symmetry of the
molecule. Thus in a homopolay diatomic molecule, w& &avs seen that the wave function must
be symmetric or entisymmetric on reflection in the plans midway between the atoms. This
{s merely the simplest example of a very genera. set of symmetry principles, which we shall
exanine in a later section. The general formulation of thess symmetry principles is best
given by the group theory; but in many important cases the results are eimple enough 80 that
they can be understood by inspection. In any case, in a polyatomic molecule, wr, a0 longer
have the conservation of sngular momentum, and the consequent arbital angulwr' muieentum
end its related quantum numbers, to help us {n our problem of classifying t*~ orbitsls and
helping in factoring the secular equation. We do, however, have these symmetry pruperties,
and they fulfill many of the same functions. Thus a study of such eymmetrical moleculee as
methane. ammonia, aid many others, really demanded the study of the eymmetry, and the
netare of ise Mmolecular orbitals and structure of these molecules advanced rapidiy.

She- iy defcoe the papere of whizh we have just spsksn, Hicksl, Niva veiry Lnpor-
tant et of papere, laid the foundation for the theory cf the bensene molecule. Earlier he and
others(a) had attacked the problem of the carbon double bond, and the application of this to

‘the bengene prohlem was obviously desirable. Let us recsll for the non-chemical reader the
particular prodiem of the beasene molecule. We recall that {¢ is e« regular hexsgon of eix
carbon atoms, with a hydrogen projecting out from each carbon et an angls of 120° to the
bonds joining {t to ite carbon nelehtvara. This sach cerhvii forms three obvioue bonde, two
with its rsighboring carbons and one with ths hydrogen; and yet the chemists wre in the Labit
®R. 8. Mulliken, Phys. Rev. 43, 279 (1933).

Tx. Hiciel, Z. Faysik 70, 204 (1931) 72, 340 (1931} 76, 628 (1933).
“Z, Racas\. T, Physix 30, <23 £i930).
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THE METHOD OF MOLECULAR ORBITALS

of thinkiig that carbon should form four bonds. Kekulé suggested many years ago that this
could be explained if there were double bonis, say, between carbon stoms 1 and 2, between
3uand 4, and between 5 and 6, {f we number them in order around “he ring, out singie bonds
between 2 and 3, between 4 and 5, and between 6 and !. This would involve us in 1 difficulty,
however, for the internuclear distance i 2 double bond {s knowr to be less than iu a single
bond, from many compounds where the bonding is unambiguous, and yet in the benzene mole-
cule the diztances are all the same. This was ccmmonly explained, in terms of single and
double bonds, by bringtig in the alternztive structure in which the doubls bonds were between
atoms 2 and 3, 4 and 5, and ¢ and 1, with single bonds between the others, and by assuning
that somehow the actuai structure was a compromise between these two pussibilities.

in terms of the valence bond theory, which we shall describe in the next chapter,
Panltu(” explained this by assuming that each of the two possibilities repreaented an unper-
turbed wave function, snd that the true wave function was a linear combination of the two; in
this particular case, since the two states were degenerate, it would he 2 sum 22 ths ¢wo, and
on account of making the linear combination, the energy of the resulting ground state would be
decreased by the amount of the non-diagonal matrix component between the two statea. This
process of combining the degensrate states was called resonance by Pauling, in analogy with
Heisenberg's original use of the term resonance in discussing the interaction of two identical
systems. (10) ‘In this way Pauling's resonance theory of chamical binding grew up, as we shall
describe more in detail in the hext chapter. -

' Huckel, however, in the papers which we have quoted, proceeded in quite s different
way, by using the ideas of molecular orbitals. Let us consider very briefly the symmetry
properties -of the moiecular orbitals in a force field such as tha: of the benzene molecule. In
the first place. the potential 2nergy is symmetrical with resgact to reflection in the plane of
all the atoms.. One can then deduce that &ll electronic wave functions must be either sym-
meirica) or aniisjmetrical under such a reflection. The electrons whose wave functions are
syhunwisiv ws @ called 0 - electrens, those with antisymmetric wave functions are w-electrons.
A study, which we shall reserve for later, shows that the 0 -electrons are responsible ic: the
three ordinary bords of which we have spoken, and there is nothing remarkable about them.

As for the v-electrons, each carbon atom by itself would have an atomic p-electron
o:rbital whecse wave function would have a nodal plane in the plane of the benzene aicius. The
w-electron molecular orbitals are built up out of these atomic orbitals, if we wish to use the
agproximation of making linsar combinztions of atomic orbitals, as we did with H,. Thus we
have six atomic p functions, which of course will combine into six molacular nrbitals. We
realize that ihe six stoms in their ring are very much like a one-dimeuaional cirystal of six

L. Pauling. J. Am. Chom. Boc. 53, 1367, 3225 (1931); 54, 988, 3570 (1932} Proc. Nat.
Acad. Sci. 18, 293 (1932); J. Chem. Pnys. 1, 280 {1933) L. Pauling and G. W. Wheland,
J. Chema., FGps. 3, 282 (13325 azd later papers.

'9w. Heisenberg, Z. Fhystk 36, 411 (1926} 39, 499 (1926} ¢1, 239 (1927).
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2. THE HISTORICAL DEVELGPMENT OF THE MOL.ECUI.AR ORBITAL METHOD

stoms, closed on itselfy and Hickel used ths analogy «f the crystalline problem which had been
worked out shortly before by Bloch. (11) to deduce the nature of tho wuve functions. If we

label the atomic orbitals lj. where j goes from | to 6, then the analogy with the metallic
problem (whick nf course can equally well be directly deduced f1om group theory) tells us that
the linear combinations cof atomic orbitals hy ring the correct sym==zicy 10 rspressni moiecu-

lar orbitals are @
Z(j) e i aj 3
61k

where k is so chosen that the function is single-valued; that is, so that the coefficient e,
which we get by putting in § = o, is the same value that we should have had by p\mtn%tn j=0,
which should equally well represent the sixth siom. In other words, we must have e k 1,
or 6k = 2ns, where n is an integer, or k = ne/3. There are just six independent values of
k, which we may take to be 0, »/3, 2w/3, w, 4%/3, S%/3; the next value would be 2v, which
yields nothing new. We note, however, that e /3 equals a""/3 ana e it 3 equals .-zd/B.
50 that we can equally well take k to have the values 0, /3, ¢ 2¢/3, «.

We have, then, six wave function, but obviously some degeneracy, for the two functions
withk = ¢ ¢/3 will obvioualy have the same energy, as will those withk = ¢+ 2w/3. The for-
mula for energy is set up as in-the metallic problem, as we shall show later when we come to
a more detailed discussion of this case. Ws find that k = 0 corresponds to the lowest one-
electron snergy: this corresponds to the bottom of an ensrgy band in a solid. The two states
withk = ¢ /3 come next, then those with k = £ 2¢/3, and finally chat withk = v, in which
the successive coefficisnts 0&1 are t !, s0 that the wave function slternates in sign from one
atom to the next, is the highest, and corresponds to the top of the energy band with a solid.

We next ask h ¥ many elecirons we have in this energy band. Each carbon atom has
two 18 electrons, two 25, and two 2p, in the free state. When we come to examine the prob-
lem of the molecular orbitals more in detali, - we shall find that ail but one of these can be ac-

' comodated ‘.1 the o -type molecular orbitals, which we are not considering at the moment.

This les es us with one eieciron per atom for the v-electron orbitals, o: 2aix in all. Obviously
we should expect that these would fill tha three lowest states, withk = 0, t ¢/3, with two el-
ectrons each, one of each spin. This describes the structure which Huckel pos*alated for the
bensene molecule, and one sees that, since each of these orbitals treats each ~° the six carbon
atoms {n an exactly equivalent way, we get away entirely from the difficulty of having to de-
scribe the molecule as having alternating single and double bonds. Essentially this type of
description ssems like certuinly the correct way to look at this problem.

The papers of Hiicke. had a great effect in turning the direction of the workers in the
field towasd what are called unsaturated hydrocerbons. These are substances in which there
are enough electrons to form a certain number of double bends, but not as many as we could

Up. Bloch, z. Physik 52, 555 (1928).
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THE METHOD OF MOLECULAR ORBITALS

imsgine geometrically (as benzene may be considcred to have three double bonds among the
siax bonde connecting carbon atoms). There are many chain compounds having this proparty,
and in some cases some of the bonds, as judged by the internuclear distance, are close to
double hands, whils cthers a-= close ¢c 2ingle bonds, the internuclear distances ahowing an
aliernation. In cther cases th:{a alternation i{e not preeent. Compounds showing this ccot of
behavior are called conjugated compounds by the chemists. In a chain compound of this eort,
we agein have an analogy to a cnec-dimencicnal crystal, only now it is terminated at the ends,
50 that the boundary conditi u-o different from the cyclic boundary conditions in the ring
compounds. Lennard-Jonee and his students, following this ide=, showed that it was poe-
eible to get solutions for the energy levele of thé molecular orbitale in such problems, and
derived many resulte from the method, in agreernent with experiment; the solution of the
sscular equations for the molecular orbitals actually yieldad the sort of alternation observed.
Work slong the same lines has proceeded rather continuoualy since these early papers. Mul-
ltken‘u) and his coworkers have written considerably on it; and since the War it has been
‘sker up agzin by many workere. (14

Another line of research inspired ty t e work of Hlcksel concerns the excited energy
levels of bensene and of the aromatic or ring compous4s. In an important paper, Goeppert-
Mayer end Sxlar{!%) applied molecular orbital methods to a calcuiation of excited energyleve'a
of benzsene. They used the zeners| formulation of Hiickel, but they went far beyond him in the
general technique of handling the problem. Huckel had computed the one-electron energy of
an electron in the field of six-20ld symmetry representing the bensene malecule, and had got
the energy levels in terms of certain exchange or resonance intograls, which he did not ¢y ¢o
compute from first principlee. He, and many succeeding users of the molacular arbitel
method, merely used these one-electron energies to represeni the energy levels of the mole-
cule, calling essentially on Koopmans' theorem to justify this (though not always recogniting
i}Me ¢theorem by name). Goeppert-Mayer and Sklar. however, proceeded in a more funda-
mental way, easttineg up a determinanial function constructed out of the molecalar crbitals, and
setting about to compute the ensrgy of the n ~ny-electron problem dy =veraging the Hamtltonian
over this wave function. They could not carry this very fer, for certala three-center integrale
(which we ehall luter examine more in detail) were too difficult to compute progerly. But they
sot a pattern for many later calculations, in which such determinantal many-electron functiions
are a&t up. _

One rather remarkable line of work has reeulted frca: this study of excited energy
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J. E. Lennard-Jones, Proc. Roy. Soc. (London) A158, 280 (1937) and later papere.
138ee tor instance R. §. Mulliken and C. A. Rieke, J. Am. Chem. Soc. 63, 1770 (1941),

l14gge for tnstance C. A. Coulson and H. C. Longuei-Higgins, Proc. Roy. S8oc. (London) A191,
39 (l%") erd many later papere.

“M. Goeppert-Mayer and A. . Swiar, J. Coem. Fhys. £, 645 (i938).
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2. THE HISTORICAL DEVELOPMENT OF THE MOLECULAR ORBITAL METHOD

levels of aromatic compounds: an extensive set of papers on the colors of organic dyeatufis.
This work more or legs stsrted with further papers by Sklar and llox'zfold(lsy following fairly
directly from the work on benzene. It has developed, however, along a rather difiecent lire.
T%o reader familiar with the theory of metals will realize that tie Bioch theory of energy
Cands ofien cas vs wall appircximated by the simpler Sommerfeld theorv of free electrona. It
occurred to a number of workers in the field that in a similar way the distribution of anergy
levels in the aromatic and unsatursted compouwi«ds might be appraoxizaated by thinking of the
moiecules as one~dimonsional regions in which free electrons of a Sommerfeld type were free
to move, with merely the quantum condition that there be a whole number of half wavelengths
of the da Broglie waves in the length G the chain, or a whole number of wave lengths around
a closed ring in a cyclic compound. We realize, of course, that there is a close resemblance
batwaen the ¢two points of view in the study of metals, wkss: the Bloch theory gives a distribu-
tion of ensrgy levels much like what we should find with the Sommerfeld theoxy but with an ef-
fective mass rather than the true electronic mass, provided we are interested oaly in the dis-
tribution of levels at the bottom of the energy band, With this point of view, an extensive sat
of papers has grown up, ralating to the behavior of the conjugated moleculas, the absorption
of light by dyestuffs, and 80 on, in which the workers in the field appear to find extensive
agreemem with experiment. The theories in this particular part of the subject may well be
oversimpiifiad: and wet g5 g gets the impression that this type of spproximation ought to be
rather good, and that it may well be that much of the work along these lines may prove on
closer examination to bs a good first lpprczlmtton.(")

Prom the survey which we have given, it is clear that the method of molecular orbitals
has found widespread application i cuemical problems. Most of the work before the War was
only semi-~quar.itative in character. Since the War, however, there has been a great burst of
aciivity in the fleld, including much work of a quantitative degree of accuracy not attempted
before. In this country, Mumkon“'; and his coworkers have initiated a program of numerical
calculation of molscular orbitals, by a modification of the self-consistent field method using
linear combinatiuns of atomic orbitals, often abbreviated LCAC. Thay set up such linear
combinations ot atomic orbitals (like our combinations » t b for the hydrogen problem) having
the provoer .ymmotfy to represent maoiecuiar orbitals, and in most cases have enough atomic
o:rbiials so thut *he coefficients of the LCAO's cannot be predicted uniquely from symmetry
considerations alone, as they could in ti:e hydrogen case. They then set up a determinanta!

18yarious papers by A. L. Skiar and K. F. Hersteld, 1937-1942.

”800 papers by O. Schmidt, 1938-1940; R. Daudel, P. Daudel, A. Pullman, and B. Pullman
1945 to the present..

'%8e¢ for irstance R. S. Mulltken, J. Chem. Phys. 46, 497, 675 (1949% C. C. J. Roothaen,
Revs. Modern Phys. 23, €9 (1951% R. G. Parr and B. L. Crawford, Jr., J. Chom. Phys.
16, 526, 1049 (1948% C. C. J. Roothaan and R. 8. Mulliken, J. Chem. Phys. 16, 118
(T8 J. E. »uigan, J. Them. Phys. 16, 347 (13%)) and numerous other papers.
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THE METHROUL OF MOLF.CULAR OF.BITALS

wave function for the ground atate of the molecule, made up ou: uf tbess molecular orbitals
expressed in terms of atom}~ orbitalx. These determinantal wave furncticas ui <ourse involve
the coefficients invoived in the L.CAO's, as yet undetermined. They compute ¢the energy of
the taolecule from this determinauial wave function, ard then vary the undetermined coeffi-
cienis to make thiz energy a minimum. in this way they determine the final coefficients re-
qQuirod to represent the moleculasr orbitals {n terms of atomic orbitals, ané from cthis can
essily gst the one-electron energies corresponding to thie molecular orbitals. We see that if
they had complete flexibility in ke functions which iy wais varyirg, their procedurs would
be precisely that leadirg to the Hartree-rock mathoi. 8Since their 1.CAO's are not completely
fiexible functions, tha resalts cannct be as good as t2ose of a Hartreve-Fock calculation, but
nevertheless they represent a conscienticus attempt to take the first really quantitative step
toward a self-consistent treatment of molecules, and their results have shown very gratilying
agreement with experiment. :

In England as well the method of molecular orbitals is baing developed at a very rapid
rate at the present time. Extensive groups of papers in the last five years by Lennard-Jcnes,
Coulson, Pople, Hall, Longuet-Higgins, Dewar, and a number of others have contributed
greatly to our understanding of the method, and of its application to chemical problems. The
literature is becoming so exter=!vz that the resder ia referred to the bitliography for the de-
tailed references. More and more it is becoming ~lear that the method of molecular orbitals
.represents an approach to chemical problems which is raore satisfactory than any other, and
that as it becomes more and more quantitative, it can be hoped to lay a really exsct founda-
tion for chemical theory. We must remember one :eicrv.ﬂou. however. From the preced-
ing chapter, we remember ih&t the method oi molecular orbitals Goes not lead to correct be-
havior ai infinite internuclear diztances, unless we take into account the ~onfiguration inter-
action with higher configuratiozay thus in the H, molecule we have to take into account not
only the molecular orbital Zround state, in which both electrons are in the symmetric orbital
a + b, but also its configuration interaction with “ne excited state in whick both electrons are
in the antisymmetric¢ orbilei a - b, in order to et o zorrect description of the molecuie ai
iniinite separation. Such configuration interaction has not been taken iiic account in most of
the work dcae by the molecular orbital method. It is probably not a very serious source of
error, but nevertheless it must warn us that the method, as usually used, is only partially
correct. Some beginnings {n the direction of configuration interaction have been made, for
instancs, by Cralg. (19) But they will have to be carried much further before we really have
a satisfactory theory of molecular structure. In the next chapter, we shall take up in detail
thesc jusstisss of configuration interaction, and of the efforts (0 understand them being msde
in the Solid-State and Molecular Theory Group at M.1. T., where they form the main topic of
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i9p. F. Crzig, Proc. Roy. Soc. (London) A200, 474 (1950), and other papers.
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3. DIATOMIC AND LINZAR TRIATOMIC MOLECULES

iMmterast,

3. Diatomnic and Linear Triatomic Molecules

We have now foliowed ine history of the developmeni of the molecular orbital theory
far enough so that we are ready to go into more details regarding it. Our main oroblem is
that of finding the one-electron orbitals: giv:n a potential function representing the potentisl
of all nuclct.. and all electrons but one, acting on the remaining electron in a molecule, how
do we solve a cne-slectron Schrbdm‘er equation fcr that electron? We cannot separate vari-
gbles as with the atomic problem, sciving the angular paris of the Schridinger equation ex-
actly by means of spherical harmonics, and being left oily with a function of r to be deter-
mined by numerical integration. Nevertheless, the symmetry properties, which are the
negrest analogue to the spherical symmetry of the single atom which we have left with a
molecule, can often be a great help in the solution of the Schrddinger equation, and in this
Se~tion we shall consider those symmetry properties, as well as considering the problem of
tetting up wave functions of the proper symmetry. The symmetry properties can be most )
systematically handled by means of the group theory. Nevertheless most of the simpler cases
can also be treated by elementary means, and we shall follow that method Liaré, believing that
after the reader has handled the problems by elementary methods, he vill be able to under-
stand the group theory treatmeats, such as that already quoted by Mulliken, more thoroughly,
and will be less likely to make mistakes in its use. In our treatment, we shall use the method
of handling a nucber of typical special cases, rather than of trying to build up a general
theory.

First we consider diatomic molecules; they are the aimplest, and were for a number
of years the only case simple enough to treat. and they were the problem for which the method
of molecular orbitals was reall;’ devised in the first place. Here, since \he potential is un-
changed if we rotate around the axis of the molecule, we can still carry out a séparation of
variables, though not as complete as with the spherically symmetrical problem. We can
write the wave function as a product of a function of the angle of rotsiion about the axis, and
a iunction of the two coordinates {n a plane passing through the axtis, and find at once that the
function of the angle is a sim;le exponential, om’. if ¢ is the angle, or cos m¢ or sin m¢,
where m {is an integer. By analogy with the atomic case. we denote an orbital withm = 0
as s & atate, one withm = t 1 asa wstate, m = t 2 o § state, 2 3 a ¢ stste, and so on (0,
" 8, ¢ bolng the Greek equivalenis of s, p, d, f). The two w states with £ 1 for m can be
denoted v, and v_, to distinguish them. If we are building up our molecular orhitals as iinear
combinations of atomic orbitals, it is obviocus that we must use sivinic orbitals with the same
value «{ m as ths corresponding molecular orbital. Tnus in the case of hydrogsn, as treated
{n the preceding chapter, we buiii up a & molecular orbital out of stomic 1s orbitais. We
could equally well have built up orbitala of the same sym=:sizy cut of atomis 22 orhitals, But
Wi could al20 hia' ¢ usedi aloic 2p orbitals cocresponding to m = 0. According tc a commonly
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accepted .otation for molecu.ar orbitals, e o orbital formed from atomic 2s functions would
be called Zscr, and one from 2p crhitals a 2po. Omn the other hand. we could build » orbitals
out of the 2p atomic ortiiais kaving m = t 1, and in that case we should call them 2pw or-
bitaly. Frtenaion of thizs nntation to higher states {s obvious.

In 2 homopolar molecule, one composed of two like atoms, there is a further require-
ment thst the wave func'ion be either symmetric or antisymmetric if we reflect in the mid-
point of the line joining the atoms. A wave function which is even is dencted by the subscrip¢
g (for gerade), ouns which is odd by a subscript u {for ungerade). It is worthwhile asking at
this point why we must have this symmetry or antisymmetry; we accepted it without question
in the preceding chapter, but it is the simplest example of a type cf symmetry which we shall
find in many other cases, and we should undersiand its origin. Suppose we have a wave func-
tion which is neither symmetric nor satis;mmetric with respect to reflection in the midpoint.
On account of the syrametry of the potential function, the wave functios: widch we get from the
original funciion by reflection must also be an eigenfunction of the problem. Let the original
function be u,, the reflected functicn uy. Also by symmetry the sigenvalue corresponding to
u, must equal that for u 1 Hence we have-a degenerate problem, and any linear combinations
of u; and u. may be used as eigcniunctions as well as u, and u, themselves. Let us then
build up the combinations u, & u,. The first of taese functions is symmet-ic, the second
antisymmetric. Thus we have shown that if we start wiil & =avs fuaction which is m.ither
symmetric nor antisymmetric, we must have two degenerate leveis from which we can form
a syrametric and an antisymmetric combination. It {s then u seii-contvediciory assuaptica
to suinnaza that we canld havs g 2. - C2generate state which was neither symmetric nor anti-
symmetric. Hence if we have a non-degensrate state, it must necessarily be either symn-
metric or antisymmetric; while if we have a degenerate state, we can mske symmaetric and
antisymm. ‘ric functions from the two degenerate states. In either case, the final functions
are symmetric or ‘ntuy.mmotric.

It is now clear. with a homopolar molecule, that from each atomic function on a sin-
gle atom, we can build up a synunatric, and an untisymmetric, combinstion. just as in ihe
preceding chapter we built up the combingetions a £ b. We may ilwa build up a et of func-
tions resembling molecular orbitals, in that each one depends on angie through the factcr
.th and {s either symmaetric cr artisymmetric unde: s reflection in the midpoint, by linear
combinations of atomic orbitals. Thése functions of ccurse will not be real moiscular or-
bitals, for those are defined as real solutions of the se.f-consistent field problem. Never-
theless for qualitative work we may use¢ them as molecular orbitals, as we did in the preced-
ing chapier. I we wish more accurate spproximations to molecular orbitals, we may make
Jinear combinations of a numbar of these approximete functions. To make the best combina-
tions, of course we compute the average energy of the combination, ueing the ons-electron
Hamtltonian derived from the self-coneistent field problem, and vary the coefficients of the
linear combinaiion to make ine energy stationsry. As we know, this {3 squivalexzt {2 solving

P

- —————— —— ———




3 grew s oy

5. DIATOMIC AND LINEAR TRIATOMIC MOLECULES

a secular equation beiween the various unperturbed functions, and fo- this socular equation
we must compute the matrix components of energy between the unperturbed wuve functions.
We now find very easily that there will be no non-diagons! mutrix components i siei gy ve-
tween two functions with different m values or between an even and an odd fun:=tion. Thus
the secular equation factors, rnd we have separate probleme {or ench m value, and for aach
symmetry. We thus see the advaniage in picking cut combinations of atomic orbitals having
the proper symmetry behavior. The combinations of atomic orbiteis haviiy this proper sym-
metry are often called symmetry orbitals. In a later section we shall go much further into-
the details of the method of getting the best linear combinations of these symm etry orbitals
to approximate the real molecular orbitals. We note that with a heteropolar molecule, con-
sisting of two nnlike stoms, we no longer nave the symmetry property of the orbitgls, so that
our secular equation does not factor as completely as for the homopolar molecule.

Let us now consider a few specific mnlaccles, We know surprisingly little about the
exact details of the molecular ortitals for the diatomic molecules; in the last few years,
wben we have had the mathemitical techniques for computing molecular orbitals fairly ac-
curately, the interest has shifted {0 more complicated molecules, and for the simpler ones
Wwe ziil must use the rather early speculations made in the first days of molecular orbital
tiuory. For 83. as we have seen in Chapter 2, the lowest molecular orbital is the ona whicrh
we might denote by lw‘, and the ground state of the molecule is that in which this orhital {=
occupied by two electrons (provided we disregard the configuration interaction with the state
in which both electrons are in the state lsc,, as we are doing in this chapter). In the two
helium atoms which would form a He, moleculd if there were binding between them, two elec-
trons are in the 1sor_, two in lw“. the total snergy of the resulting combination being
greater than for two separated atoms, s0 that there is no molecule formstion. In le. pre-
sumably the next molecular orbital energy level above the xw' and xwu is the one which we
could denote a8 280, and thia is occupied by the two outer electrons of the moleculs, gt
& binding not unlike that in H,. InBe,, presumably the antisymmstric function 280, lies
sbove the symmaetric function 2pe |, and the latles preswusviy is occupled by the outer two
electrons, the formor"bolng empty. If instead we had the 280, occupied by two elecirons, we
could reasonably expect a repulsion, as between two helium atoms.

Let us next pass to Nz. 02' and FZ' whose band spectra are well known, so that the
order of their moleculsr orbital energies can be deduced with fair certainty. In these mole-
cules, it seems likely that the order of energy levels, going from the most tightly bound, {s
approximately \w‘. 8o, , Zw‘. 280, o zpcg. Zp', @ Zpu,‘_. Zpo' In N, with its four-
teen electrons, the lows: ssven of theu orbttal. are filled with two elcctronc each; that is,
they are filled through 2pw, - This gives a }: state; each orbital is filled with two elec-
trons, one of each spin, loudlng to the singlet; thorc are equal numbers of orbitals with posi-
tive an negative components of ortital anguier momentum around the axis, so that it is a

z stats; and the number sf u orbitals {s even, so that wheo we reficct in the midpoint, the
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whole wave function does not change sign, and we have a g state. In OZ' the next two elec-
tromns go iito the Zpw,_ states. There are two of these stetcs, howevsr, £o tha! there are

six possitle con!tt.xr.auonz: two in which btk clectrons, one of each spin, are either in 2p,
or zp_‘, and four {n which one electron ¢3 in oive orhiial, one in the other. The first poa-
&ibliitias will lead to lA states, the toial orbital anguisr momentum being two units, where-
as the last four, in the familiar way. will lead to a singlet and a triplet, in this case xzand
32. As in an atom, the 3}:wm e below the lz , and it proves tc be the lowest state in the
molecule; giving one oi ihe few molecules with a triplet for a ground state, and expldntng the
paramagnetic nature of oxygen, a:ising on account of the magnetic moment associated with
the spin. Carcful consideration of the aymmetry of the electroaic wave function in this 32
state shows that it is 32 as we should expect. In Fy the Zp't g states are filled, leaving
only the 2pc, states unoccupied, and leading sgalii to a ! Y state. Finally with two Ne atoms
all thase atates are filled, and we have repulsion as with two heliums.

This gives us a Jood idea of the behavior of ti:e molecular orbitals {n homopolar di-
atomi- molecules. In heteropolar molecules; we do not have the simpiification introduced by
the symmetry. Let us suppose that ihe two atoms are quite different ia properties. Then
the energy levels of the inner electrons in the two atoms will be quite different from =ach
other. When we set up the two-center problem, there will still be wave functions and energy
levels for these inner electrons, practically as in the isolzted stcms. The wave function
correspoading, say, to the 1s electron in the first atom wiil be very amall in the neighbor-
hand of the second atom, and vice verva. For the outer electroas, on ibe contrary, it may
weil be that the real wave functions will sztend from one atom to the other. As a very sim-
ple example, suppose we were dealing with a molecule NaK. In Na,, there would be a o
orbital formed from the 3s slectrona on hoth Na atoms; these could combine to form sym-
metric and antisymmetric orbitals. We should certainly expect that in NeiX thcre would be
rather similar orbitals, but formed from the 3s electron of Na and the 4s of K. This sug-
gests that in many cases it mpy happen that one atomic energy level of one atom, and another
level of the other, may have approximately the same energy. Then the corresponding wave
functions will become periurbed when the atoms form into molécules, and the resulting mo-
lecular orbitals will be combinations of the atomic wave functions of the two atoms, often
with quite complicated properties. We shall give an example of this situation shcrily, in the
case of a triatomic molecule. '

There is one properiy of the molecular orbitals in the heteropolar mclecules which is
quite differen: from what we find with the Licomopolar ones, and which bas important conse-
quences. On account of the lack of :ymmitry. each orbital will generally correspond to hav-
ing different amounts of charge on the two atoms. In a symmetric or antisymmetric wave
function, such as we h2ave with the symmetric molecule, we necesscrily have equal charges
oi1 eacly, but we have just sc=n taat in the extreme case of an inner eleciron in a heteropolar
molecule. the charge can be entirely concentratad in oue ato, and we can have ail inter-
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3. DIATOMIC AND LINEAR TRIATOMIC MOLECULES 1

mediate cases betvreen this situation and that of symmetricai charge distribution. Then when
we build np a determinantal wave function out of these orbitals, adding the charge distribs- ¢
tions {n the various orbits!s, we are by no means bound to come out with just enough elec-

tronic charge on each atom to balancs its nuclear charge, According to our rules, we fill the

lower oroiiais wiih electrons, going far enough up to accomodate all eiectruns, and we may H
well leave the atoms with some degree of ionization, though of course tha total cliarge on the

molecule as a whale will balance. This amount of {oaization, pius on one atom and minas on

the other, obviously does nut have to be any integral multiple of an electronic charge, and the l
net dipole moment of the molecule which arises from it can heve any value. There has been
a certain amount of study of the dipole moments of diatomic molecules from this point of
view; in generai, ihe amount of ionization found on each atom is small, much smaller than
naive ideas of the formation of the molecule from ions would suggest. There i{s room for
much further study along the same lines.

Diatomic molecules are not the only ones having the type of symmetry of which we
bave bSeen speaking in this section. It i{s obvious that any linear molecule will have the same
quantization of the component of angular momertum along the axis, with the same o, w, §,
and 80 on characterising its molecular orbitals. And any linear moalecule with a ceater of
symmetry will have the properties of having symmetric and antisymmetric orbitals. There
are a aumber of {mnartant molecuies falling into this ciass. For instance, among inorganic
compound., an important oae is coz.. «shich is a linear molecule wiih the arrangem.at OCCy
among organic compounds there is acetylene C,H,, again a linear compound with the ar-
rangement HCCH. Both of these compounds obviouszly are symmetrical abnut their midpoints,
86 that their orbitals are all either sym=maotric or antisymmetric with respect to inversion in
this midpoint. A very thorough calculation of the molecular orbitals in COz has recently
been made by Mulligan, (209) and ‘7 e shall digcuss his resulis in moderate detai'!. This ex-
ample will give us a chance to become somzswhat acquainted with the LCAOQ, or linear com-~
bination of atomic orbital, method, which of course we have already discussed for H,, but
which undarlies ixve¢ of the recent work on molecular orbitais, and which we ghall discuss
more completely in a later section.

A carbon or oxygen atom has electrons in 1s, 2s, and 2p ~rbitals. On account of the
threafoid degeneracy of the 2p orbitais in an atom, there sre five such orbitale for eack atom.
Out of these five atomic functicons in the three atoms, we can construct fifteen linesr combina-
tions, which can represent apprcximations to the molecular orbitals. We could, if we chose,
determins the fifteen molecular orbitals in the following fashion. We could set up the matrix
componants of a one-electron Hamilionian operator between these functions, the operator
consisting of the kinetic ensrgy, and the potential energy in the self-consistent field of nu-
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cls! and all other electrous, determined for instance by the methods taken up in Chapter 1,

5. F. Muliigen . Coem. Frye. 19, 347 (1951).

88

. " 606 b

s G ¢5 Satmt




THE METHOD OF MOLECULAR ORBITAL3

We could then solve the resulting sccular cquaiion ius the fifteen ona-electron energies or
elgenyalues of the probiem, and for the eigenvectors or coefficients of the linear transfocrma-
tions expressing the corract wave functions as linear combinations of the original unperturbed
functions. Thus we should find {is moiscilar orbitals. ‘The method used by Mulligan was
slightuy different, forming a direct anzlogy to the Hartree-Fock method. but the results will
be very approximately the same by either scheme. We shall teke up the relations between
these two methuxis in a lster section. For the moment let us merely consider Mulligsn's re-
sults.

In the firat place, we can simplify the problem greatly by inicoducing at the outset
combinations of stomic orvitals having proper symmetry. The one-electron Hamiltonian wiil
have no matrix components between two wave functions with different components of sngular
momentum along the axis; and it will have no matrix components between ¢two functions one of
whick is symmetric and the other antisymmetric with respect to {avers=isn != the midpoist.

Ii is then very convenient to introduce linear combinations of the etomic orbitals, each char-
acterised by a definite walue of component of angular momentum along the axis, and each of
which is symmetric or antisymmetric. Such a combination of atomic orbitals is often called
¢ symmatry orbital. The secular equation will then automatically be fectored, and will-break
down {nto a number of separate secular equations, one fcr each type of symmetry. iLet us
analyse this problem of CO, in detail, to see how many functions of each symmetry we shall
have. ‘

Each of the three atoms has three orbitals with serv component of angular momentum
along the axis: the ls, 2s, and 2po. Thus out of the nine functions of this type, we can con-
struct nine O orbitals of the molecule. Ezach atom has one orbital with + 1 component of
angular momentum, and each has one with - 1 component. Thus there will be three =, or-
bitals, and three »_'s. Within each type, we shall have orbitals symmetric and antisym -
metric with respect to inversion, or ¢f g and u type. Let us s¢s how many of these we have.
To do thia, let us construct the symmetry orbitals. It is convenient to have some notation for
ibe alomic orbitais, and we may a6 well USS thwe wieiivn epivyed LY Mullig=n, Re Jeleis o
the ls orbitals on the two oxygen atoms as o and o'; to the two 2s8's on tLe oxygens as s and
s't to the 1s on the carbon as ¢, and to ths 28 on the carbon as 8. For the po's on the oxy-
gens, be used the notation s and 8’, aini fO0r the po on the carbon, the notation s . The rea-
son for this notation for the po's is the foliowing. We take the z axis to be along the axis of
the moalecule, the oxygen atom with unprimed orbitals being found at negative s, the carbon
atom at the origin, and the oxygen atom with primed orbitals at positive s. The 2po orbital
then {s writtei: ic spherical coordinates as having a factor r cos 0, where @ is the angle in
polar coordinates. That is, for the carbon atom, this crbital has a factor s, with a nodal
plane at s = 0, and positive values of ihe function for positive &, negative for segative. Ina
similar way tle corrssponding orbitals of the oxygens have nodal planea perpendicular to the
s wres and passing thoough ‘heir nucic!. end in each case the atomic function 12 nos'sive on
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the side of the nodal plane pointing slona the diraction of ¢ =.

We can now see eaily that from our nine atomic o orbitais, we can construct five
symmetric or g functions, four antisymmeiric or u functions. We may take the g sym-
metry cr>itcls aso + o', s + 8', ¢c, L and 2 - £'. All of these arec obvious except per-
Laps the lust. The reason why we need the minus sign with the functions z and z' is that z is
positive on the positive side of the nodal plane through the oxygen nucleus; that is, it is posi-
tive toward the carbon atom, negative away from it. For a g function, we must combine the
corregponding function on the other oxygen which is positive toward the oxygen, but this func-
ticn is negative toward increasing z's, and hence is - z'. [n an analagous way, thc u sym-
metry orbitals are o - o', s - 8', z + z', and z. Thus in our secular equation for the mo-
lecular orbitals, we shall have a {iftn1 degree equation for the states of o_ symmetry, and a
fourth degree equation for those of o, symmetry. Mulligan simplifies by.assuming. as is
undoubtedly legitimate, that the 18 orbitals will not appreciably be mixed in with the 2s and
2p in making up the molecular orbitals. That is, he assumes that two of the o_ molecular
orbitels are identical with the symmetry orbitals o + o' and ¢, and that one of the o, molecu-
lar orbitals is identical with o - o'. He then solves a cuhic equation for the three linear
combYinations of s + s’, s.. and = - %' representing the three remaining orbitals of g‘ type,
and ancthco cubic equation for the three linear combinstions of s - 8!, z + z', and z, to form
the three remaining o urdiials.

The final linear combinations which Mulligan obtains, at the equilibrium distance of
separation, ere given in Table VII. As we see, ke uses the notation lcr‘, Zc‘. etc., for the

Table VII
lc‘ s 0.48(s +8') + 0. 32z, + 0.21(z - z'), le, =0 38(3 - s') ¢+ 0.l1(z + ') - O.Slzc

Zc‘ =-0.51(s + 8') ¢+ V.40s_ + 0. 46(z - z'), 20, = 0. 64(s -s8') + 0.37(z + 2') - 0. GSzc

30‘ = 0.55(s + 8') - 1.32s, + 0. 64(z - z'), 3cru = 0.85(s -8') 4+ 0.84(z + 2') ¢ 1.55z,

various resulting funcilons. the energies increasing as we go from lo_to 20, etc. From
the values in the table, it is clear that we cannot identify any one of these orbitals with any
one of the atoms; the corresponding atomic leveis in the carbon and oxygen atoms are ao
nearly the same that we have combinations which are large on both. It {s rather hard to in-
terpret these functions without seeing them ec:tually computed and plotted, and ii. Fig. &« we
give such a plot, though Mulligan does not give it. The thing which has been plotiad {5 the
vaiue of the wave function at points along the line passing through the nuclei, computed from
the formulas for the various atomic orbitals given in Mulligen's peper. To understand the
figure, we must first remomber the general form of the atomic orbitals. We remember that
&a stzmmic 2s funciion, iike s, 8', and 8_ above, is finite at the nucleus. vary ranidly de-
creases, goes through a node and chnng;a sign, and has an outer part of considergble extent,
of opposite sign to the valus at tha nucieus. Tioe wave function actually is not us lavge in this
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‘ 30y 30, .'

Fig. 4

I‘ Wave functions for states log --- 3o, of CO,, along
internuclear axis, following &uulgm.

{ outer region as it is near the nucleus; but the volume of spece near the nucleus is so small
ihat¢ oaly a small fraction of the charge is located near the nucleus, most of it being ir ihe ;
| ocuter part of the wave function. Thue i'« Fig. 4 we clearly see the high peaks in the wave
function near each nucleus, but we must remember that these are unimportant in considering :
the general behavior of the charge distribution.

To help the reader fix his attention on the important featuree of the wave function, we
have drawn do'ted lines in Fig. 4, showing the gencral trénd of the wave functions if we dis-
regard these peaks asar the nuclecd. Snce we icok at thzse dotted curves, w. sec what s
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going on: as we go from lc‘ to lou. Zc‘. Zou. and so on, we hove o successicn of curves
each having one node more than the preceding one, and looking much like the successive wave
functions of a one-dimensional linezr oscillator, or like the successive sine curves repre-
senting the states of a one-dimensional parti:le in a box. The true nature of the wave func-
tions, as we see {n this way, is much like that of electrons freely wundering through the whole
molecule. If we set up a cylindrical region about the size of the molecule, with a constant po-
tential inside it, and a potential which rapidly rose outside the box, we should have wave
functiona for an electron in this cavity which would vary along the lengti. of the cavity much
like those which we have found, and which would fall off as we went out from the center of the
cavity in a radial dir. stion. Of course, in higher quantum numbers the wave function would
also have nodes as we went out along the radius, but these wouwld correspond to higher excita-
tions than we are considering here. This sort of situaticn, in which the molecular orbitals
have resemblance to the w.ive functions of a free electron {n a cavity of the same size as the
molecule, {s of very widespread occurrence. Of course, the real wave function, as we see
from Fig. 4, is modified near each nucleus, but this does not affect its general behavior.

There is an obviocus icsemblance between these wave functions and the sort found in a
crystalline solid. We ar= familiar with the procedure of Bloch, (1) who superposed atomic
orbitals to get one-electron functions in a crystal, showing that the resulting wave functions
are similar to sinusoidal waves as found for a free clectron. The present vrlter(”'z) has
drawn curves for the wave functions of conduction electrons in metallic sodium, Arawing dot-
ted lines through the wave functions in just such a way as we have done in Fig. 4, and the
similarity of those curves to these computed for CO, is quite striking. It is this similarity
which makes it reasonable to approximate the behavior of electrons in aromatic and other
compounis by replacing them by free electrons in a potential trough, as we discussed in the
preceding section.

We bave now considerea ine o orbitals in the COz problem in a good deal ol detail; we
shall next take up the « orbitals, tFough not going into them so thoroughly. We have a ®, or-

+
bital on each of the atoms, so that as mentioned earlier, we can set up three v, molecular or-

bitals. The v, orbital on the carbon atom dependz on r and 8 through ihe fau;r r sin o; tnat
is, it is always positive, and has then the same value for equal positive and negative values of
g, provided the angle ¢ is the same. Inversion through the origin can te thought of as made
up of two operations: reflection in the plane z = 0, which does not change the value of the
function, and rotation through 160° around the axis of the molecule, or increase of ¢ by 1800,
which changes the sign of the factor et’ which appears if\ the wave function. Hence this func-
tion is of the u form, changing sign on an inversion. The sum of the two oxygen "o orbitals

similarly has a u symmetry, and the difference has a g symmetry. Thus we have two u

2lp. Bloch, Z. Physik 52, 555 (1928).
zzJ. C. Slater, Reva, Madern Phya. 6 209 (1934); aee p, 247.
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THE METHOD! OF MOCLECULAR ORBITALS

symmetry orbitals, and vne g, made out of these v, atomic functions, so that *he g function
is uniquely determined without solving a secular equation, and we must solve a quadratic

secular equation to find the two u's. We shali have another set of two u's and one g, deter-
mined from the »_'s, degcnerste wiili thie first set. Mulligan has determined these fonctions, .
and expreased them in terms similar to thos: of Table VII.

Now that we are famitiar with the molecuiar orbitals, «¢ can consider wiich ones are
occupied ii the ground siate of the CO, molecule. Mulligan has found the one-electron ener-
gicc of the orbitals, and his major interest is to compare these with observed energy levels
as found in the band spectra; the argreement is quite good. For our present purposes, how-
ever, we care only about the order of the levels. The molecule has twenty-two electrons,
six from the cairton, eight from each oxygen. The fiiteen molecular orbitals wouid acccmo-
date thirty electrons, so that the highest four orkitais, capable of holding eight electrons,
must¢ be unoccupied, and the remaining ones are those filled in making up the determinantal
wave function. These highest four orbitals prove to be the 3o g and 30’u given in Table VII
and Fig. 4, and thy higher of the two » ‘s formed from the »_ and v_ atomic orbitals. Thus
we understand exactly how to construct the molecular orbital wave function.

A great deal of thought has gone into the problem of how to estlaate the nature of the
molecular orbitals, and the value of their one-election cnergies, in molecules of various
types, without actuaily going through calculations such as Mulligan has made. We have
noted {n ocur historical zurvey tha: Mulllken and others for many yeéars have been engaged in
interpreting band spectra, with comparatively little use of detailed mathematical analysis.
The methods used have mostly amounted to qualitative attempts to understand the nature of
the wave functions, and to see what features of the wave functions are associated with bonding.
Thus from tiz we assume that a molecular orbital like the symmetric function a + b, which
has a maximum {n the region between the atoms, has a lower energy than an orbital like the
antisymmetric function a - b, which has a node between the atoms. We can see why this
should be s0, in either of two wavi. First, it is a general rule of wave mechanics that in-

creasing the number of .nodes increases the energy of the wave fu~ction, though this rule can-
not be taken uncritically in any problem in more than one dimension. Secondly, the charge
distribution betwee-. .¢ nuclei in the symmeiric function is in a region where the potential
ener gy {8 lowered, on account of the fact that in this region both nuclei are attracting the el-
ectronic charge, and this lowers the energy of this state in comparison to the antisymmetric
case, where charge is removed from this region between the atoms. In similar ways we can
argue that the orbitals denoted as lo g and lau tn Fig. 4, which have large ciiarge concentra-
ticns and no nodes hetween the carbon and axygen atoms, should correspond to strong binding,
and orbitals 3“8 and 3o ., which have nodes between the carbons and oxygens. saould have
high energy and discourage binding. Such qualitative arguments nave been very useful, but
as time goes on and we gct more and more quantitative results like those of YMullizen, we
shall nc doult have less need of such methods.
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4. SIMPLE PLANRAR MOLECULES -- YATER AND ETHYLENE

The chemists generally draw the COz molecule by showing doutle bonds between the
atoms, O=C=0, {n order to satisfy their general rules that two bonds are to be attached to an
oxygen aiom. and four iv a carboi. Mulligan undertock his stacy tc see what would be meant
by this double bond. It i{s clear that the actual situaiivu is complicated. However, one fea-
ture that is definite in the structure is that both o electrons and w» electrons are included in
the bonding process, and this seems to be a characteristic of a dounle tond. We shall see
later that o -type electron alone are concerned in single bonds, just as in hydrogen. On ac-
count of the way in wiilch the wave functions are spread over the molecule, however, as
shown {u Fig. 4, {t is rather clear that we cannct assign some of the clectrons to the forma-
tion of bonds, and others to the separited atoms, in eny such definite way as the chemists
are accustomed to do.

4. Simple Planar Molecules -- Water and Ethylene

We have now become fairly familiar with the problem of the linear molecule, and
shall go on to the next degree of complication, a molecule in a plane, using as {llustrations
two simple cases, water and ethylene. We first take water, a triangular molecule with the
oxygen atom at the apex, the lines from oxygen to hydrogens mnku{g an angle of something
over a right angie. For the suxe of having the Z2eomsiry definite, let us take the plane of the
molecule to the yz plane, the z axis being the bisector of the angle between the two OH bonds,
and the oxygen being at the origin. Then we note that there are a number of symmeétry opera-
tions which can be applied to the molecule, leaving it unchanged. Thus we can reflect in the
y= plane, or change x into - x3 we can reflect in the x» niene, changing y into - y, so that one
hydrogen changes into the other. We can rotate about the z axis through 180°, but this op-
eration is not independent of the others; it is easy to show that successive reflections in the
ys and the xz plane are equivalent to such a rotation. We may then reasonably expect that
every molecular orbital will be symmetric or antisymmetric on reflection in ihe yx piane,
and symmetric or antisymmetric on reflection in the xz plane.

We eoxpect that'there will be no degeneracy left in the molecular orbitals in this prob-
lem. Let us see why this is, in an elementary way. Let us suppose that we started with a
fictitious problem in which the hydrogen atoms were brought into coincidence with each other
and with the oxygen atom, so that all three nuclei were located at the origin. Then we ask
‘what happens as we move the two hydrogen atoms, still coinciding with each other, away from
the oxygen aiom along the z directinn, to form a diatomic molecule. Finally we separate the
two hydrcgens, moving one in the + y direction, the other in the - y direction, to form the
triangular configuration of the actual moiecule. The original combined molecule is identical
witk a neon atcm, and has spherical symmetry, so that in th self-consistent field prodiem
we have the degeneracy characteristic of the central field probliein, and ali states of the same

4 value, {ndependent of th:ir m, have the same energy. Thus in particular the three 2p or-
*itals all duve the san:s endrygy. Now we move the two hydrcgens, siill cotrciding wids eaca
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o:her, along the z axis, tc form a molecule which in fact would form ar oiygen a‘om pnd a
heliam atom. We should now have the type of linear symmatry considered in the preceding
section. All orbitals would have quantized angular momentum about the 2z axis. Out of the
oxygen atomic orbitals we could construct symmetry orl‘)l‘t‘als ofa ¢ and a w type. The «
orbitals would have angular dependence of the form of e” °* wiih respect to rotation about the
axis, and would be zero along the internuclear axis, while the ¢ orbitals would be independ-
ent of rotation, and would have their maximum values along the axis. Thus these two types
of orbita!s would have juite different ¢nergies, since the o types are more concentrated in
the region between the two atoms than tne x types. We must realize that, since we are not
dealing with a homopolar molecule, we shali not have g and u-type combinattons, but never-
theless some orbitals will have nodal planes between the two atoms, and others will not, and
the o -type orbitals with no nodal planes will have lower energies, those with nodal planes
will have higher energies, while the =-type orbitals will not be split so nuclh in their energy.

We are still left with a certain amount of degeneracy with this linear molecule: with
each w-type orbital we have two degenerate states corresponding to wave functions with fac-
tors at i . We can also write these weve functions in a different way, more convenient for
what will follow immediately. We can write the functions with factors cos ¢ and sin ¢, or
what is the same thing, with factorsc x and y, giving nodal plurzs respectively as the yz and
xz planes. That is, the first type of function i{s antisvinmetric with respect to reflection in
the yz plane, the second antisymmetric with respect to reflection in the xz plane, but each is
symmetric with respect to reflection in the other plune. Now let us see whst happens when
the two hydrogen atoms are separated as in the actual molecule. [t is clear that the effects
on the w-like functions with nodai planes {n the plane of the molecule, the yz plane, will be
quite different from those with nodal planes in the xz plane; the former types of orbitals are
zero at the positions of the hydrogen atoms, while the latter types have maxima here. Thus
the degeneracy between the two types of functions which would be w-orbitals in the linear case
is removed, and at the same time we see that by setting up our funciions with nodal planes in
the yz or xs planes, we automatically have got the correct sort to represent the symmetry of
the final molecule.

It ie perhaps worthwhile at this polnt to say something a little more profound abzut

xs and yz olanes, and that the degeneracy be removed; this is the sort of statement which we
shall have to make in all the various types of symmeiry which we shall meet, and while we

shall not go into the group thecry to prove the consequences of the symmetry in the matter of
the behavior of the wave function, nevertheless we may as well begin to undersatand the funda-
mentals of symmetry operations. In the first place. an operation of reflection, or of rota-

tion, {s not in principle different from any other operation in quantum mechanics. To reiiect
in the yz plane, for instance, we have seen that we change x into - x. In other words, under
this operation a given function of x, 5. and » is changed {aic another fuscticn. The new func-
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tion may be identical with the original function (if the original function is symmetric in x) or
equal to its negative (if it is an‘symmetric). More generally it might be a quite different
function. If we have such anr operator, which we may call R, we can let this operate on each
wave junction of a complete orthogoricl set, and obtain in this way a set of functions Ru,.
Ru,, . . ., where Upe Uy, - o e formed the compliete orthogonal se¢t. These transformed
functions may in turn be expanded in terms of the complete orthogonal sct, sv that we may
Yind the matrix component:: oi R, wiich are just the expansion cusilicicits: Ry = Z(j) P‘jtuj'
u le is a diagonal mui: ix, the operation R transforms u into a constant times itself, and
in the cases of symmetric and antisymmetric funclions this constant is 1 and - 1 respective-
ly. ¥R i is not diugcns), 9""1 must be written as a linear combtination of more thas cne
member oi the complete orthogonal se&t.

Before we are through, we shall find examples of both diagonal and non-diagonal ma-
trices for such operators, but our presen: simp:e case, where all functions are either sym-
metric or antisymmetric with respect to reflection both in the yz and the xz plane, is one
where both these operations, which we may call Ryz and R . simultaneously have diagens'
matrices. We realize from our general knowledge of quantum mechanics that we cannot have
two nperators whose matrices are simultaneously diagonal unless two conditiony are satis-
fied: first, each Hperator must commute with the energy, in order that its matriz =: be
ciagonal with respect to functiviis which aie eigenfunciions of the energy: secondly, the two
operators must commute with eachk other. If the two operators both commuted with the en-
ergy, but did not commute with each other, we could make either one diagonal, but nct bolh.
We have met this situation before: in Chapter 1, we found that the x, y, and z components of
anguler momentum have operators each of which commutes with the energy, but which do not
commute with each other. We then were abie to diagonaiize one of these operators, which
we generally chose to be the z component of angular momentum, but could not dizgonalize
the others. The x and y components of angular momentum had non-diagonal matrix com-
ponents, and yet they represented constant quantities, since they comr.uted with the energy.
The way they achieved this was that there was degeneracy, and the x and y components had
non-vanishing matrix components only between two Jdegenerate states, whose time depend-
ence therefore had zero frsgusncy. :

We now see that this situation can be perfectly general. If we have two symmetry
operators, say R, and Rz. both of which commute with the energy. but which do not commute
with each other, then we can choose eigenfunctions which will diagonalize both the energy and
one of the operators, say R,. But then Rz cannot be diagonal, so that we must have degen-
eracy, and Rz will have non-vanishing matrix cuinpornents between the various degenerate
states. This situation, then, of having non-commuting symmetry opeiators, necessarily
leads to degeneracy. We shall later have more to say about why the angular momentum op-
erators have these properties, so that we get the degeneracy in problems of rotational sym-
metry. For the racmeat, hoviever, we are more interested in the simpler cases where all
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i symmetry operators commute with each other as well as with the encrgy. For in this case, . I
which we have with water, we can diagonalize each of the symmetry operstera. so that each L
operator must transform the eigenfunction into a constant times itself, the constant {n this

simple case being either +1 or -1. As a result of this we have no degeneracy. '

g yo—aa

We must check, before we go further, that our t»> rciiections Ryz and sz commute
with each other and with the energy. In the first place, all the symmetry operators we shall
consider ccmmute with the energy: this is their fundamental characteristic. We can easidy
show that any symmetry nperztor which transforms the potential energy into {tself will com-
mute with the Hamiltonian. The reason is simple, as we can see from the case where the
operastion 18 transicrming x intc - x. We have (n this case Ru(x, y, z) = u( -x, y, z). Thus
HRu(x, y, z) = Hu( -x, y, z). But RHu(x, y, z) is what we get when we transform x into
- x in the function Hu(x, y, z). We find x appearing in this function both through its wppear-
ance in u, and in H. In H it appears in the kinetic energy (where changing x into - x ob-
vioualy makes no difference), and in the potential energy, where by hypothesis no change is
to be made by the transformation. Thus the result {s Hu{-x, y, £), 30 that we see that HRu
= RHu, or R and H commute with each other.

As for the other fact, that our two reflections commute with each other, this is al-
most obvious. The first operation changes x into - x;: that is, it changes the f.rst of the
three arguments of u into its negative. The second changes the second of the three argu-
ments of u into its negative. It is obvious that these operations can be applied in either or-
der. We must be on our guard at this point, however: wea shall find some operators before
! we are through which 4o nat comemte with azch cther, sc thil we must éxamine each case
carefully.

We have now digressed long enough to examine the philosophy behind the s; mmetry
of our orbitals in the case of water, and we may return te the very simple situation wh.. Y we
remember that we have here. First, all orbitals must be either symmetric or antisymmet-
ric on reflection in the yz plane, the plane of the nuclei; second,.all mnust be symmetric or
antisymmetric on reflection in the xz plane, a reflection which carries one of the hydrogens
into the other as to {ts mirror image. It is rather customary in such planar molecules to

use a notation somewhat similar to that for linear molecules; the crbitais which are antisaym-
| metric in reflection in the plane of the nuclei are often called v orbitals, snd those wnich are
symmetric are called o orbitals. Let us nov ask how orbitals of the required symmetry
types can be built up as lincar combinations of the atomic orbditals. We consider the 18, 2s,
and 2p atomic orbitals cf oxygan, and the ls of hiydrogen.
We ncte in the first place that if we write the oxygen orbitals in the form of 1s, 2s,
Y’ sz are of the form xf(r), yf(r), zf(r), the=z oroitals al-
ready have the proper fo: m for symmetry orbitals: each une is either symmetric or anti-

and pr. Zpy, sz. where pr. 2p

symmetric when x goes into - x, or y goes into - y. The two hydrogen 1s orbitais by them-
sclves cznnol gerve a3 symmetry orbi‘als, however, fur they are reither symumnetric nor
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antisymmetric on reflection in the xz plane. Instead, we must meke symmetric and antisym-
metric linear combinations of them, just as we do in the hydrogen molecule: the sut rejre-
sents tne symmetric combinaiion, the difference the antisymmetric. We thus have seven
symmetry orbitels from which we can construct seven imolecular orbitals. Of thezg, {our,
which are respectively ls, 2s, sz. and the sum oi ‘the hydrogen orbitals, are even in both

x and y; two, Zpy and the difference ol the hydrogeis orbitals, are even in x, odd in y;: and
one, pr. is odd in x, even in y. and thus represents the only » orbital of the lot. None of
these functions are odd in both x and y, though if we went to higher quantum numbers we
shouid find tunctions of this sort. To find the mclecular orbitals, we then must solve a bi-
quadratic equation to get the orbitals even in x and y (though we may assume, as Mvlligan
did in CO,. that the 1s by itself represents one of the orviiais, 3u thui we ueed vidy avive &
cubic for the three reamining ones). We must solve a quadratic to get the functions even in
x, odd in y; and we already have the functions odd in x, even in y.

When we do this, we find that of the three orbitals formed {rem 23, 2p_, and the sum
of the hydrogen orbitals, the two of lower ener gy will both correspond to havu;g considerable
concentration of charge between the oxygen and the hydrogens, having some of the charac-
teristicas of the symmetric orbital a + b in the Hz case, or the lowest orbitals in the CO,
case as shown in Fig. 4. The highest energy of the three will go with an orbital which has
nodes between the oxygen and the hydrogens. Similarly of the two functions formz3 from Zpy
and the difference of the hydrogens, the ore of lower energy will have concentration of charge
between oxygen and hydrogens, while the higher will have nodes. As for the = orbital, it has
no considerable charge distribution near the hydrogens, and i{s unimportant as far as the
binding is concerned. In the ground state of the molecuie, whcre we have ten electrons to
accomodate, eight from the oxygen and two from the hydrogens, we shall have {wo electrons
¢ach in the lower five of these ortitals; the empty ones will be thosz which, as we have just
seen, have nodes between the oxygen and the hydrogens. The charge distribution correspond-
ing to this determinantal function will then have concentrations between the oxygen and the
hydrogens corresponding in a general way to the two bonds, but also there will be the cor -
centration arising from the « electrons, extending in a direction perpendicular xo the plane
of the nuclei. This concentration in the » crbital becomes particularly importent in the case
of ethylene, which we shall take up next, and which in some ways resembles {wo water mcle-
cules placed adjacent to each other.

The ethylene molecule, C,H,, as we have just stated, is much like two water mole-
cules in its shape. Along the z axis we may locate the two carbons, spaced at equal iis-
tances from the origin. The two hydirogens attached to each carbon are in a plane, which as
with water we take to be the yz plane, stretching out in two triangles much like water mole-
cules in shape and size. Our molecular orbitals, as with water, inustbe symmetrical or antisym-
metrical onreflectioninthe yz and xz planes. Here, however, we have an additionsl symmetry
operation, reflezt‘oninilic ay plane, whichbrings one CH2 group into the positionformerly nccu-
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pied by tho other CHz. Since these three reflections all represent operaticns which comumnute
with c<ach other, the molecuiar orbitals vill be eigenfunctions for each operation. and ihey
will be syminetric or antisymmaeatric when ws carry ocut reflections in this xy plane.

To set up the symmetry orbitals, we can first proceed just as in water, setiing up
seven orbitals for each Cl-!z group. For each, we have the carbon 1s, 2s, and sz. and the
sum of the hydrogen 18 functions, giving four functicns which are even on reflection in the yz
=nd the xz planes; the carbon 2p_, and thc difference of the two hydrogen 1s functions, giving
two functions which are even on reflection in yz, but odd in xz; and the carbon 2p,. a w or-
bital, odd on reflection in yz, 2<ven in xz. None of these orbitals as they stand are either
symmetric or antisymmetric on reflection in xy, but we can make sums and A’ferences of
the seven orbitals on the two CH, groups, so that each oi the s¢vei orbitals of each group
generate: ¢wo orbitais for the whele molecule, one even and the other odd on reflection in xy.
We ihis have fourteen orbitals, capable of holding twenty-eight electrons; but the molecule
has only sixteen electrons, so that six of the fourteen orbitals must be empty in the molecu-
lar orbitai representation of the ground state of the molecule. It is very important, then, to
consi~~ the order of the ene-gies of the various orbitals, to see which ones are occupizd.

n he first place, if the Cl{z groups were far enough apart so that they hardly inter-
acted «.t" each other at all, the final molecular orbitals, as well as the symmetry orbitals,
would be very riearly the eume and differences of the symmetry orbditals on the two groups,
and since the overlapping of the two would be very unimportant, the symmetric and antisym-
metric orbitals generated from any single orbital of the CH, problem would havc almost ex-
actly the same energy. Thus we could expect that in this case the orbitals would resemble
strongly those which we have described for water, supplemented by their mirror image (with
or without change of sign) on the other group. As with waier, we should expect that the two
highest symmetric orbitals, and the two highest antisymmetric ones, would resemble the two
which are unoccupied, {n water, having nodes between the carbon and the hydrogens. This
would leave five orbitals which are symmetric {n the xy p)ane, and five which are antisym-
metric, capable of accomodating twenty electrons. When the CH, groups come closer to-
gether, however, cach of the orbitals which is antisymmetric on reflection in the xy plene
has a node bet:reen the two carbons, while the symmetric orbitals do not. Thus we may rea-
sonably expect a considerable splitting of those orhitals whose wavz functions overlap con-
siderably in the region between the carbons,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>